A242873 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3), 3-principalization type (4443), IPAD [(3,3,3)^3, (3,9)], and Hilbert 3-class field tower of unknown length at least 3.
3896, 6583, 23428, 25447, 27355, 27991, 36276, 37219, 37540, 39819, 41063
Offset: 1
Examples
Already the smallest term 3896 resists all attempts to determine the length of its Hilbert 3-class field tower.
References
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.
Links
- L. Bartholdi and M. R. Bush, Maximal unramified 3-extensions of imaginary quadratic fields and SL_2Z_3, J. Number Theory 124 (2007), 159-166.
- N. Boston, M. R. Bush, F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, arXiv:1111.4679 [math.NT], 2011.
- D. C. Mayer, The distribution of second p-class groups on coclass graphs, arXiv:1403.3833 [math.NT], 2014.
Programs
-
Magma
for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C,mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo
: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and (3 eq e) then d, ", "; end if; end if; end if; end for;
Extensions
Definition completed by Daniel Constantin Mayer, Sep 22 2014
Comments