cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242887 Number T(n,k) of compositions of n into parts with distinct multiplicities and with exactly k parts; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 3, 1, 0, 1, 0, 6, 4, 1, 0, 1, 1, 4, 4, 5, 1, 0, 1, 0, 9, 8, 15, 6, 1, 0, 1, 1, 9, 5, 15, 21, 7, 1, 0, 1, 0, 10, 8, 20, 6, 28, 8, 1, 0, 1, 1, 12, 12, 6, 96, 42, 36, 9, 1, 0, 1, 0, 15, 12, 30, 192, 168, 64, 45, 10, 1, 0, 1, 1, 13, 9, 20, 142, 238, 204, 93, 55, 11, 1
Offset: 0

Views

Author

Alois P. Heinz, May 25 2014

Keywords

Examples

			T(5,1) = 1: [5].
T(5,3) = 6: [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1].
T(5,4) = 4: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1].
T(5,5) = 1: [1,1,1,1,1].
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 0,  1;
  0, 1, 1,  3,  1;
  0, 1, 0,  6,  4,  1;
  0, 1, 1,  4,  4,  5,  1;
  0, 1, 0,  9,  8, 15,  6,  1;
  0, 1, 1,  9,  5, 15, 21,  7,  1;
  0, 1, 0, 10,  8, 20,  6, 28,  8, 1;
  0, 1, 1, 12, 12,  6, 96, 42, 36, 9, 1;
		

Crossrefs

Columns k=0-10 give: A000007, A057427, A059841 (for n>1), A321773, A321774, A321775, A321776, A321777, A321778, A321779, A321780.
Row sums give A242882.
T(2n,n) gives A321772.
Cf. A242896.

Programs

  • Maple
    b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,
          `if`(i<1, 0, expand(add(`if`(j>0 and j in s, 0, x^j*
           b(n-i*j, i-1,`if`(j=0, s, s union {j}))/j!), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n$2, {})):
    seq(T(n), n=0..16);
  • Mathematica
    b[n_, i_, s_] := b[n, i, s] = If[n==0, Total[s]!, If[i<1, 0, Expand[Sum[ If[j>0 && MemberQ[s, j], 0, x^j*b[n-i*j, i-1, If[j==0, s, s ~Union~ {j}] ]/j!], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
  • PARI
    T(n)={Vecrev(((r,k,b,w)->if(!k||!r, if(r,0,w!*x^w), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b,1<Andrew Howroyd, Aug 31 2019