cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A182176 Number of affine subspaces of GF(2)^n.

Original entry on oeis.org

1, 3, 11, 51, 307, 2451, 26387, 387987, 7866259, 221472147, 8703733139, 479243212179, 37070813107603, 4036214347068819, 619402703369958803, 134108807406166799763, 40994263184865380595091, 17700624176280878586721683, 10799420012335823235718509971
Offset: 0

Views

Author

Gaëtan Leurent, Apr 16 2012

Keywords

Comments

q-binomial transform of A000079 for q=2. - Vladimir Reshetnikov, Oct 17 2016
From Geoffrey Critzer, Jul 15 2017: (Start)
a(n) is the total number of vectors in all subspaces of GF(2)^n.
a(n) is the number of subspaces of GF(2)^(n+1) that do not contain a given nonzero vector. (End)

Examples

			For n=2, there are 4 affine subspaces of dimension 0, 6 of dimension 1, and 1 of dimension 2.
		

Crossrefs

Cf. A006116.

Programs

  • GAP
    List([0..20],n->Sum([0..n],k->(2^n/2^k*Product([0..k-1],i->(2^n-2^i)/(2^k-2^i))))); # Muniru A Asiru, Aug 01 2018
  • Mathematica
    Table[Sum[2^n/2^k * Product[(2^n-2^i)/(2^k-2^i),{i,0,k-1}],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Jun 22 2014 *)
    Table[Sum[QBinomial[n, k, 2] 2^k, {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 17 2016 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m/prod(k=1,m+1,1-2^k*x+x*O(x^n))),n)} /* Paul D. Hanna, May 01 2012 */
    
  • Sage
    def a(n): return sum([(2^n/2^k)*prod([(2^n-2^i)/(2^k-2^i) for i in [0..k-1]]) for k in [0..n]])
    

Formula

a(n) = Sum_{k=0..n} (2^n/2^k * Product_{i=0..k-1} (2^n - 2^i)/(2^k - 2^i)).
G.f.: Sum_{n>=0} x^n / Product_{k=1..n+1} (1-2^k*x). - Paul D. Hanna, May 01 2012
a(n) ~ c * 2^((n+1)^2/4), where c = EllipticTheta[2, 0, 1/2] / QPochhammer[1/2, 1/2] = A242939 = 7.3719494907662273375414118336... if n is even, and c = EllipticTheta[3, 0, 1/2] / QPochhammer[1/2, 1/2] = A242938 = 7.3719688014613165091531912082... if n is odd. - Vaclav Kotesovec, Jun 22 2014
a(n) = (2^n - 1)*A006116(n-1) + A006116(n). - Geoffrey Critzer, Jul 15 2017

A242938 Decimal expansion of c_e, coefficient associated with the asymptotic evaluation c_e*2^(n^2/4) of the number of subspaces of the n-dimensional vector space over the finite field F_2, n being even.

Original entry on oeis.org

7, 3, 7, 1, 9, 6, 8, 8, 0, 1, 4, 6, 1, 3, 1, 6, 5, 0, 9, 1, 5, 3, 1, 9, 1, 2, 0, 8, 2, 6, 8, 0, 9, 1, 5, 8, 8, 8, 5, 8, 7, 6, 3, 5, 4, 7, 2, 2, 6, 6, 2, 2, 6, 6, 8, 9, 4, 3, 5, 4, 6, 1, 0, 4, 2, 3, 1, 0, 1, 5, 6, 7, 4, 3, 0, 0, 0, 7, 2, 8, 9, 4, 4, 7, 5, 7, 0, 8, 8, 2, 4, 7, 8, 0, 5, 5, 6, 9, 9, 5
Offset: 1

Views

Author

Jean-François Alcover, May 27 2014

Keywords

Examples

			7.3719688014613165091531912...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.7 Lengyel's constant, p. 318.

Crossrefs

Programs

  • Mathematica
    digits = 100; EllipticTheta[3, 0, 1/2]/NProduct[1-2^(-j), {j, 1, Infinity}, WorkingPrecision -> digits + 10, NProductFactors -> digits] // RealDigits[#, 10, digits]& // First
    RealDigits[EllipticTheta[3, 0, 1/2]/QPochhammer[1/2, 1/2], 10, 100][[1]] (* Vladimir Reshetnikov, Oct 17 2016 *)
  • PARI
    th3(x)=1 + 2*suminf(n=1,x^n^2)
    th3(1/2)/prodinf(n=1,1-2.^-n) \\ Charles R Greathouse IV, Jun 06 2016

Formula

(Sum_(k=-infinity..infinity) q^(-k^2)) / (prod_(j>0) (1-q^(-j))), with q = 2.
Showing 1-2 of 2 results.