cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A242420 Self-inverse permutation of positive integers: a(n) = (A006530(n)^(A071178(n)-1)) * A243057(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 11, 12, 13, 35, 10, 16, 17, 18, 19, 45, 21, 77, 23, 24, 25, 143, 27, 175, 29, 30, 31, 32, 55, 221, 14, 36, 37, 323, 91, 135, 41, 105, 43, 539, 20, 437, 47, 48, 49, 75, 187, 1573, 53, 54, 33, 875, 247, 667, 59, 90, 61, 899, 63, 64, 65
Offset: 1

Views

Author

Antti Karttunen, May 31 2014

Keywords

Comments

This self-inverse permutation (involution) of positive integers preserves both the total number of prime divisors and the (index of) largest prime factor of n, i.e., for all n it holds that A001222(a(n)) = A001222(n) and A006530(a(n)) = A006530(n) [equally: A061395(a(n)) = A061395(n)].
It also preserves the exponent of the largest prime factor (A071178), from which follows that the sequence A102750 is closed with respect to this permutation, i.e., for all n in A102750, a(n) is either same n or some other term of A102750.
Considered as an operation on partitions encoded by the indices of primes in the prime factorization of n (as in table A112798), this implements a self-inverse bijection which is a composition of the effects of A242419 and A225891. (Or equally: A105119 and A242419). For details, please see the respective Comments sections and/or Example section of this entry.

Examples

			For n = 2200, we see that it encodes the partition (1,1,1,3,3,5) in A112798 as 2200 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5 = 2^3 * 5^2 * 11. This in turn corresponds to the following Young diagram in French notation:
   _
  | |
  | |
  | |_ _
  |     |
  |     |_ _
  |_ _ _ _ _|
First we apply A242419, which reverses the order of "steps", so that each horizontal and vertical line segment centered around a "convex corner" moves as a whole, so that the first stair from the top (one unit wide and three units high) is moved to the last position, the second one (two units wide and two units high) stays in the middle, and the original bottom step (two units wide and one unit high) will be the new topmost step, thus we get the following Young diagram:
   _ _
  |   |_ _
  |       |
  |       |_
  |         |
  |         |
  |_ _ _ _ _|
which represents the partition (2,4,4,5,5,5), encoded in A112798 by p_2 * p_4^2 * p_5^3 = 3 * 7^2 * 11^3 = 195657.
Then we apply A225891, which rotates the exponents of distinct primes in the factorization of n one left, in this context the vertical line segments one step up, with the top-one going to the bottomost, and so we get:
   _ _
  |   |
  |   |_ _
  |       |
  |       |
  |       |_
  |_ _ _ _ _|
which represents the partition (2,2,4,4,4,5), encoded in A112798 by p_2^2 * p_4^3 * p_5 = 3^2 * 7^3 * 11 = 33957, thus a(2200) = 33957.
		

Crossrefs

Programs

Formula

a(n) = (A006530(n)^(A071178(n)-1)) * A243057(n).
For all k in A102750, a(k) = A243057(k) = A243059(k).
By composing related permutations:
a(n) = A225891(A242419(n)) = A242419(A105119(n)).

A243058 Fixed points of A243057 and A243059.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 12, 13, 17, 19, 21, 23, 24, 29, 30, 31, 37, 41, 43, 47, 48, 53, 59, 61, 63, 65, 67, 70, 71, 73, 79, 83, 89, 96, 97, 101, 103, 107, 109, 113, 127, 131, 133, 137, 139, 149, 151, 154, 157, 163, 165, 167, 173, 179, 180, 181, 189, 191, 192, 193, 197, 199, 210
Offset: 1

Views

Author

Antti Karttunen, May 31 2014

Keywords

Comments

Number n is present if its prime factorization n = p_a * p_b * p_c * ... * p_i * p_j * p_k (where a <= b <= c <= ... <= i <= j <= k are the indices of prime factors, not necessarily all distinct; sorted into nondescending order) satisfies the condition that the first differences of those prime indices (a-0, b-a, c-b, ..., j-i, k-j) form a palindrome.
The above condition implies that none of the terms of A070003 are present, as then at least the difference k-j would be zero, but on the other hand, a-0 is at least 1. Cf. also A243068.

Examples

			12 = 2*2*3 = p_1 * p_1 * p_2 is present, as the first differences (deltas) of the indices of its nondistinct prime factors (1-0, 1-1, 2-1) = (1,0,1) form a palindrome.
18 = 2*3*3 = p_1 * p_2 * p_2 is NOT present, as the deltas of the indices of its nondistinct prime factors (1-0, 2-1, 2-2) = (1,1,0) do NOT form a palindrome.
65 = 5*13 = p_3 * p_6 is present, as the deltas of the indices of its nondistinct prime factors (3-0, 6-3) = (3,3) form a palindrome.
		

Crossrefs

A subsequence of A243068.
Apart from 1 also a subsequence of A102750.
A000040 is a subsequence.

A242413 Numbers in whose prime factorization the first differences of indices of distinct primes form a palindrome; fixed points of A242415.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 48, 49, 53, 54, 59, 60, 61, 63, 64, 65, 67, 70, 71, 72, 73, 79, 81, 83, 89, 90, 96, 97, 101, 103, 107, 108, 109, 113, 120, 121, 125, 127, 128, 131, 133, 137, 139, 140, 144
Offset: 1

Views

Author

Antti Karttunen, May 31 2014

Keywords

Comments

Number n is present, if its prime factorization n = p_a^e_a * p_b^e_b * p_c^e_c * ... * p_i^e_i * p_j^e_j * p_k^e_k where a < b < c < ... < i < j < k, satisfies the condition that the first differences of prime indices (a-0, b-a, c-b, ..., j-i, k-j) form a palindrome.
More formally, numbers n whose prime factorization is either of the form p^e (p prime, e >= 0), i.e., one of the terms of A000961, or of the form p_i1^e_i1 * p_i2^e_i2 * p_i3^e_i3 * ... * p_i_{k-1}^e_{i_{k-1}} * p_{i_k}^e_{i_k}, where p_i1 < p_i2 < ... < p_i_{k-1} < p_k are distinct primes (sorted into ascending order) in the prime factorization of n, and e_i1 .. e_{i_k} are their nonzero exponents (here k = A001221(n) and i_k = A061395(n), the index of the largest prime present), and the indices of primes satisfy the relation that for each index i_j < i_k present, the index i_{k-j} is also present.

Examples

			1 is present because it has an empty factorization, so both the sequence of the prime indices and their first differences are empty, and empty sequences are palindromes as well.
12 = 2*2*3 = p_1^2 * p_2 is present, as the first differences (deltas) of prime indices (1-0, 2-1) = (1,1) form a palindrome.
60 = 2*2*3*5 = p_1^2 * p_2 * p_3 is present, as the deltas of prime indices (1-0, 2-1, 3-2) = (1,1,1) form a palindrome.
61 = p_18 is present, as the deltas of prime indices, (18), form a palindrome.
144 = 2^4 * 3^2 = p_1^4 * p_2^2 is present, as the deltas of prime indices (1-0, 2-1) = (1,1) form a palindrome.
Also, any of the cases mentioned in the Example section of A242417 as being present there, are also present in this sequence.
		

Crossrefs

Fixed points of A242415.
Differs from A243068 for the first time at n=36, where a(36)=60, while A243068(36)=61.

A242417 Numbers in whose prime factorization both the first differences of indices of distinct primes and their exponents form a palindrome; fixed points of A242419.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 61, 64, 65, 67, 70, 71, 73, 79, 81, 83, 89, 90, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 133, 137, 139, 149, 151, 154, 157, 163, 165, 167, 169
Offset: 1

Views

Author

Antti Karttunen, May 20 2014

Keywords

Comments

Numbers that are fixed by the permutation A242419, i.e., for which A242419(n) = n. Also, numbers that are fixed by both A069799 and A242415.
Number n is present if its prime factorization n = p_a^e_a * p_b^e_b * p_c^e_c * ... * p_i^e_i * p_j^e_j * p_k^e_k where a < b < c < ... < i < j < k, satisfies the condition, that both the first differences of prime indices (a-0, b-a, c-b, ..., j-i, k-j) and the respective exponents (e_a, e_b, e_c, ... , e_i, e_j, e_k) form a palindrome.
More formally, numbers n whose prime factorization is either of the form p^e (p prime, e >= 0), i.e., one of the terms of A000961, or of the form p_i1^e_i1 * p_i2^e_i2 * p_i3^e_i3 * ... * p_i_{k-1}^e_{i_{k-1}} * p_{i_k}^e_{i_k}, where p_i1 < p_i2 < ... < p_i_{k-1} < p_k are distinct primes (sorted into ascending order) in the prime factorization of n, and e_i1 .. e_{i_k} are their nonzero exponents (here k = A001221(n) and i_k = A061395(n), the index of the largest prime present), and the indices of primes satisfy the relation that for each index i_1 <= i_j < i_k present, the index i_{k-j} is also present, and the exponents e_{i_j} and e_{i_{(k-j)+1}} are equal.

Examples

			1 is present because it has an empty factorization, so both sequences are empty, thus palindromes.
3 = p_2^1 is present, as both the sequence of the first differences (deltas) of prime indices (2-0) = (2) and the exponents (1) are palindromes.
6 = p_1^1 * p_2^1 is present, as both the deltas of prime indices (1-0, 2-1) = (1,1) and the exponents (1,1) form a palindrome.
8 = p_1^3 is present, as both the deltas of prime indices (1) and the exponents (3) form a palindrome.
300 = 4*3*25 = p_1^2 * p_2^1 * p_3^2 is present, as both the deltas of prime indices (1-0, 2-1, 3-2) = (1,1,1) 1, 2 and the exponents (2,1,2), form a palindrome.
144 = 2^4 * 3^2 = p_1^4 * p_2^2 is NOT present, as although the deltas of prime indices (1-0, 2-1) = (1,1) are palindrome, the sequence of exponents (4,2) do NOT form a palindrome.
441 = 9*49 = p_2^2 * p_4^2 is present, as both the deltas of prime indices (2-0, 4-2) = (2,2) and the exponents (2,2) form a palindrome.
30030 = 2*3*5*7*11*13 = p_1 * p_2 * p_3 * p_4 * p_5 * p_6 is present, as the exponents are all ones, and the deltas of indices, (6-5,5-4,4-3,3-2,2-1,1-0) = (1,1,1,1,1,1) likewise are all ones, thus both sequences form a palindrome. This is true for all primorial numbers, A002110.
47775 = 3*5*5*7*7*13 = p_2^1 * p_3^2 * p_4^2 * p_6^1 is present, as the deltas of indices (6-4,4-3,3-2,2-0) = (2,1,1,2) and the exponents (1,2,2,1) both form a palindrome.
90000 = 2*2*2*2*3*3*5*5*5*5 = p_1^4 * p_2^2 * p_3^4 is present, as the deltas of indices (3-2,2-1,1-0) = (1,1,1) and the exponents (4,2,4) both form a palindrome.
		

Crossrefs

Fixed points of A242419. Intersection of A242413 and A242414.
Subsequences: A000961, A002110.
Showing 1-4 of 4 results.