cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A242419 Reverse both the exponents and the deltas of the indices of distinct primes present in the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 11, 18, 13, 35, 10, 16, 17, 12, 19, 75, 21, 77, 23, 54, 25, 143, 27, 245, 29, 30, 31, 32, 55, 221, 14, 36, 37, 323, 91, 375, 41, 105, 43, 847, 50, 437, 47, 162, 49, 45, 187, 1859, 53, 24, 33, 1715, 247, 667, 59, 150, 61, 899, 147, 64, 65
Offset: 1

Views

Author

Antti Karttunen, May 17 2014

Keywords

Comments

This self-inverse permutation (involution) of natural numbers preserves both the total number of prime divisors and the (index of) largest prime factor of n, i.e. for all n it holds that A001222(a(n)) = A001222(n) and A006530(a(n)) = A006530(n) [equally: A061395(a(n)) = A061395(n)].
Considered as an operation on partitions encoded by the indices of primes in the prime factorization of n (as in table A112798), this implements a bijection which reverses the order of "steps" in Young (or Ferrers) diagram of a partition (but keeps the horizontal line segment of each step horizontal and the vertical line segment vertical). Please see the last example in the example section.
To understand the given recursive formula, it helps to see that in the above context (Young diagrams drawn with French notation), the sequences employed effect the following operations:
A001222: gives the height of whole diagram,
A051119: removes the bottommost step from the diagram,
A241919: gives the length of the horizontal line segment of the bottom step, i.e. its width,
A071178: gives the length of the vertical line segment of the bottom step, i.e. its height,
A242378(k,n): increases the width of whole Young diagram encoded by n by adding a rectangular area A001222(n) squares high and k squares wide to its left,
and finally, multiplying by A000040(a)^b adds a new topmost step whose width is a and height is b. Particularly, multiplying by (A000040(A241919(n))^A071178(n)) transfers the bottommost step to the top.

Examples

			For n = 10 = 2*5 = p_1^1 * p_3^1, we get p_(3-1)^1 * p_3^1 = 3 * 5 = 15, thus a(10) = 15.
For n = 20 = 2*2*5 = p_1^2 * p_3^1, we get p_(3-1)^1 * p_3^2 = 3^1 * 5^2 = 3*25 = 75, thus a(20) = 75.
For n = 84 = 2*2*3*7 = p_1^2 * p_2 * p_4, when we reverse the deltas of indices, and reverse also the order of exponents, we get p_(4-2) * p_(4-1) * p_4^2 = 3 * 5 * 7^2 = 735, thus a(84) = 735.
For n = 2200, we see that it encodes the partition (1,1,1,3,3,5) in A112798 as 2200 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5 = 2^3 * 5^2 * 11. This in turn corresponds to the following Young diagram in French notation:
   _
  | |
  | |
  | |_ _
  |     |
  |     |_ _
  |_ _ _ _ _|
Reversing the order of "steps", so that each horizontal and vertical line segment centered around a "convex corner" moves as a whole, means that the first stair from the top (one unit wide and three units high) is moved to the last position, the second one (two units wide and two units high) stays in the middle, and the original bottom step (two units wide and one unit high) will be the new topmost step, thus we get the following Young diagram:
   _ _
  |   |_ _
  |       |
  |       |_
  |         |
  |         |
  |_ _ _ _ _|
which represents the partition (2,4,4,5,5,5), encoded in A112798 by p_2 * p_4^2 * p_5^3 = 3 * 7^2 * 11^3 = 195657, thus a(2200) = 195657.
		

Crossrefs

Fixed points: A242417.
{A000027, A122111, A153212, A242419} form a 4-group.
{A000027, A069799, A242415, A242419} form also a 4-group.

Formula

If n = p_a^e_a * p_b^e_b * ... * p_h^e_h * p_i^e_i * p_j^e_j * p_k^e_k, where p_a < ... < p_k are distinct primes (sorted into ascending order) in the prime factorization of n, and e_a .. e_k are their nonzero exponents, then a(n) = p_{k-j}^e_k * p_{k-i}^e_j * p_{k-h}^e_i * ... * p_{k-a}^e_b * p_k^e_a.
As a recurrence:
a(1) = 1, and for n>1, a(n) = (A000040(A241919(n))^A071178(n)) * A242378(A241919(n), a(A051119(n))).
By composing related permutations:
a(n) = A122111(A153212(n)) = A153212(A122111(n)).
a(n) = A069799(A242415(n)) = A242415(A069799(n)).
a(n) = A105119(A242420(n)).

A243058 Fixed points of A243057 and A243059.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 12, 13, 17, 19, 21, 23, 24, 29, 30, 31, 37, 41, 43, 47, 48, 53, 59, 61, 63, 65, 67, 70, 71, 73, 79, 83, 89, 96, 97, 101, 103, 107, 109, 113, 127, 131, 133, 137, 139, 149, 151, 154, 157, 163, 165, 167, 173, 179, 180, 181, 189, 191, 192, 193, 197, 199, 210
Offset: 1

Views

Author

Antti Karttunen, May 31 2014

Keywords

Comments

Number n is present if its prime factorization n = p_a * p_b * p_c * ... * p_i * p_j * p_k (where a <= b <= c <= ... <= i <= j <= k are the indices of prime factors, not necessarily all distinct; sorted into nondescending order) satisfies the condition that the first differences of those prime indices (a-0, b-a, c-b, ..., j-i, k-j) form a palindrome.
The above condition implies that none of the terms of A070003 are present, as then at least the difference k-j would be zero, but on the other hand, a-0 is at least 1. Cf. also A243068.

Examples

			12 = 2*2*3 = p_1 * p_1 * p_2 is present, as the first differences (deltas) of the indices of its nondistinct prime factors (1-0, 1-1, 2-1) = (1,0,1) form a palindrome.
18 = 2*3*3 = p_1 * p_2 * p_2 is NOT present, as the deltas of the indices of its nondistinct prime factors (1-0, 2-1, 2-2) = (1,1,0) do NOT form a palindrome.
65 = 5*13 = p_3 * p_6 is present, as the deltas of the indices of its nondistinct prime factors (3-0, 6-3) = (3,3) form a palindrome.
		

Crossrefs

A subsequence of A243068.
Apart from 1 also a subsequence of A102750.
A000040 is a subsequence.

A242413 Numbers in whose prime factorization the first differences of indices of distinct primes form a palindrome; fixed points of A242415.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 48, 49, 53, 54, 59, 60, 61, 63, 64, 65, 67, 70, 71, 72, 73, 79, 81, 83, 89, 90, 96, 97, 101, 103, 107, 108, 109, 113, 120, 121, 125, 127, 128, 131, 133, 137, 139, 140, 144
Offset: 1

Views

Author

Antti Karttunen, May 31 2014

Keywords

Comments

Number n is present, if its prime factorization n = p_a^e_a * p_b^e_b * p_c^e_c * ... * p_i^e_i * p_j^e_j * p_k^e_k where a < b < c < ... < i < j < k, satisfies the condition that the first differences of prime indices (a-0, b-a, c-b, ..., j-i, k-j) form a palindrome.
More formally, numbers n whose prime factorization is either of the form p^e (p prime, e >= 0), i.e., one of the terms of A000961, or of the form p_i1^e_i1 * p_i2^e_i2 * p_i3^e_i3 * ... * p_i_{k-1}^e_{i_{k-1}} * p_{i_k}^e_{i_k}, where p_i1 < p_i2 < ... < p_i_{k-1} < p_k are distinct primes (sorted into ascending order) in the prime factorization of n, and e_i1 .. e_{i_k} are their nonzero exponents (here k = A001221(n) and i_k = A061395(n), the index of the largest prime present), and the indices of primes satisfy the relation that for each index i_j < i_k present, the index i_{k-j} is also present.

Examples

			1 is present because it has an empty factorization, so both the sequence of the prime indices and their first differences are empty, and empty sequences are palindromes as well.
12 = 2*2*3 = p_1^2 * p_2 is present, as the first differences (deltas) of prime indices (1-0, 2-1) = (1,1) form a palindrome.
60 = 2*2*3*5 = p_1^2 * p_2 * p_3 is present, as the deltas of prime indices (1-0, 2-1, 3-2) = (1,1,1) form a palindrome.
61 = p_18 is present, as the deltas of prime indices, (18), form a palindrome.
144 = 2^4 * 3^2 = p_1^4 * p_2^2 is present, as the deltas of prime indices (1-0, 2-1) = (1,1) form a palindrome.
Also, any of the cases mentioned in the Example section of A242417 as being present there, are also present in this sequence.
		

Crossrefs

Fixed points of A242415.
Differs from A243068 for the first time at n=36, where a(36)=60, while A243068(36)=61.

A243068 Fixed points of A242420.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 48, 49, 53, 54, 59, 61, 63, 64, 65, 67, 70, 71, 72, 73, 79, 81, 83, 89, 96, 97, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 133, 137, 139, 144
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2014

Keywords

Comments

A number n is present if its prime factorization n = p_a * p_b * p_c * ... * p_i * p_j * p_k^e_k, where a <= b <= c <= ... <= i <= j < k are the indices of prime factors, not necessarily all distinct, except that j < k, and the greatest prime divisor p_k [with k = A061395(n)] may occur multiple times, satisfies the condition that the first differences of those prime indices (a-0, b-a, c-b, ..., j-i, k-j) form a palindrome.

Examples

			4 = p_1^2 is present, as the first differences (deltas) of the prime indices (excluding the extra copies of the largest prime factor 2), form a palindrome: (1-0) = (1).
18 = 2*3*3 = p_1 * p_2 * p_2 is present, as the deltas of the indices of its nondistinct prime factors, (excluding the extra copies of the largest prime factor 3) form a palindrome: (1-0, 2-1) = (1,1).
60 = 2*2*3*5 = p_1 * p_1 * p_2 * p_3 is NOT present, as the deltas of prime indices (1-0, 1-1, 2-1, 3-2) = (1,0,1,1) do NOT form a palindrome.
Also, any of the cases mentioned in the Example section of A243058 as being present there, are also present in this sequence.
		

Crossrefs

Fixed points of A242420.
Differs from A242413 for the first time at n=36, where a(36)=61, while A242413(36)=60.
A000040 and A243058 are subsequences.
Showing 1-4 of 4 results.