cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A242417 Numbers in whose prime factorization both the first differences of indices of distinct primes and their exponents form a palindrome; fixed points of A242419.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 61, 64, 65, 67, 70, 71, 73, 79, 81, 83, 89, 90, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 133, 137, 139, 149, 151, 154, 157, 163, 165, 167, 169
Offset: 1

Views

Author

Antti Karttunen, May 20 2014

Keywords

Comments

Numbers that are fixed by the permutation A242419, i.e., for which A242419(n) = n. Also, numbers that are fixed by both A069799 and A242415.
Number n is present if its prime factorization n = p_a^e_a * p_b^e_b * p_c^e_c * ... * p_i^e_i * p_j^e_j * p_k^e_k where a < b < c < ... < i < j < k, satisfies the condition, that both the first differences of prime indices (a-0, b-a, c-b, ..., j-i, k-j) and the respective exponents (e_a, e_b, e_c, ... , e_i, e_j, e_k) form a palindrome.
More formally, numbers n whose prime factorization is either of the form p^e (p prime, e >= 0), i.e., one of the terms of A000961, or of the form p_i1^e_i1 * p_i2^e_i2 * p_i3^e_i3 * ... * p_i_{k-1}^e_{i_{k-1}} * p_{i_k}^e_{i_k}, where p_i1 < p_i2 < ... < p_i_{k-1} < p_k are distinct primes (sorted into ascending order) in the prime factorization of n, and e_i1 .. e_{i_k} are their nonzero exponents (here k = A001221(n) and i_k = A061395(n), the index of the largest prime present), and the indices of primes satisfy the relation that for each index i_1 <= i_j < i_k present, the index i_{k-j} is also present, and the exponents e_{i_j} and e_{i_{(k-j)+1}} are equal.

Examples

			1 is present because it has an empty factorization, so both sequences are empty, thus palindromes.
3 = p_2^1 is present, as both the sequence of the first differences (deltas) of prime indices (2-0) = (2) and the exponents (1) are palindromes.
6 = p_1^1 * p_2^1 is present, as both the deltas of prime indices (1-0, 2-1) = (1,1) and the exponents (1,1) form a palindrome.
8 = p_1^3 is present, as both the deltas of prime indices (1) and the exponents (3) form a palindrome.
300 = 4*3*25 = p_1^2 * p_2^1 * p_3^2 is present, as both the deltas of prime indices (1-0, 2-1, 3-2) = (1,1,1) 1, 2 and the exponents (2,1,2), form a palindrome.
144 = 2^4 * 3^2 = p_1^4 * p_2^2 is NOT present, as although the deltas of prime indices (1-0, 2-1) = (1,1) are palindrome, the sequence of exponents (4,2) do NOT form a palindrome.
441 = 9*49 = p_2^2 * p_4^2 is present, as both the deltas of prime indices (2-0, 4-2) = (2,2) and the exponents (2,2) form a palindrome.
30030 = 2*3*5*7*11*13 = p_1 * p_2 * p_3 * p_4 * p_5 * p_6 is present, as the exponents are all ones, and the deltas of indices, (6-5,5-4,4-3,3-2,2-1,1-0) = (1,1,1,1,1,1) likewise are all ones, thus both sequences form a palindrome. This is true for all primorial numbers, A002110.
47775 = 3*5*5*7*7*13 = p_2^1 * p_3^2 * p_4^2 * p_6^1 is present, as the deltas of indices (6-4,4-3,3-2,2-0) = (2,1,1,2) and the exponents (1,2,2,1) both form a palindrome.
90000 = 2*2*2*2*3*3*5*5*5*5 = p_1^4 * p_2^2 * p_3^4 is present, as the deltas of indices (3-2,2-1,1-0) = (1,1,1) and the exponents (4,2,4) both form a palindrome.
		

Crossrefs

Fixed points of A242419. Intersection of A242413 and A242414.
Subsequences: A000961, A002110.

A122111 Self-inverse permutation of the positive integers induced by partition enumeration in A112798 and partition conjugation.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 12, 32, 10, 64, 24, 18, 7, 128, 15, 256, 20, 36, 48, 512, 14, 27, 96, 25, 40, 1024, 30, 2048, 11, 72, 192, 54, 21, 4096, 384, 144, 28, 8192, 60, 16384, 80, 50, 768, 32768, 22, 81, 45, 288, 160, 65536, 35, 108, 56, 576, 1536, 131072, 42
Offset: 1

Views

Author

Keywords

Comments

Factor n; replace each prime(i) with i, take the conjugate partition, replace parts i with prime(i) and multiply out.
From Antti Karttunen, May 12-19 2014: (Start)
For all n >= 1, A001222(a(n)) = A061395(n), and vice versa, A061395(a(n)) = A001222(n).
Because the partition conjugation doesn't change the partition's total sum, this permutation preserves A056239, i.e., A056239(a(n)) = A056239(n) for all n.
(Similarly, for all n, A001221(a(n)) = A001221(n), because the number of steps in the Ferrers/Young-diagram stays invariant under the conjugation. - Note added Apr 29 2022).
Because this permutation commutes with A241909, in other words, as a(A241909(n)) = A241909(a(n)) for all n, from which follows, because both permutations are self-inverse, that a(n) = A241909(a(A241909(n))), it means that this is also induced when partitions are conjugated in the partition enumeration system A241918. (Not only in A112798.)
(End)
From Antti Karttunen, Jul 31 2014: (Start)
Rows in arrays A243060 and A243070 converge towards this sequence, and also, assuming no surprises at the rate of that convergence, this sequence occurs also as the central diagonal of both.
Each even number is mapped to a unique term of A102750 and vice versa.
Conversely, each odd number (larger than 1) is mapped to a unique term of A070003, and vice versa. The permutation pair A243287-A243288 has the same property. This is also used to induce the permutations A244981-A244984.
Taking the odd bisection and dividing out the largest prime factor results in the permutation A243505.
Shares with A245613 the property that each term of A028260 is mapped to a unique term of A244990 and each term of A026424 is mapped to a unique term of A244991.
Conversely, with A245614 (the inverse of above), shares the property that each term of A244990 is mapped to a unique term of A028260 and each term of A244991 is mapped to a unique term of A026424.
(End)
The Maple program follows the steps described in the first comment. The subprogram C yields the conjugate partition of a given partition. - Emeric Deutsch, May 09 2015
The Heinz number of the partition that is conjugate to the partition with Heinz number n. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r). Example: a(3) = 4. Indeed, the partition with Heinz number 3 is [2]; its conjugate is [1,1] having Heinz number 4. - Emeric Deutsch, May 19 2015

Crossrefs

Cf. A088902 (fixed points).
Cf. A112798, A241918 (conjugates the partitions listed in these two tables).
Cf. A243060 and A243070. (Limit of rows in these arrays, and also their central diagonal).
Cf. A319988 (parity of this sequence for n > 1), A336124 (a(n) mod 4).
{A000027, A122111, A241909, A241916} form a 4-group.
{A000027, A122111, A153212, A242419} form also a 4-group.
Cf. also array A350066 [A(i, j) = a(a(i)*a(j))].

Programs

  • Maple
    with(numtheory): c := proc (n) local B, C: B := proc (n) local pf: pf := op(2, ifactors(n)): [seq(seq(pi(op(1, op(i, pf))), j = 1 .. op(2, op(i, pf))), i = 1 .. nops(pf))] end proc: C := proc (P) local a: a := proc (j) local c, i: c := 0; for i to nops(P) do if j <= P[i] then c := c+1 else  end if end do: c end proc: [seq(a(k), k = 1 .. max(P))] end proc: mul(ithprime(C(B(n))[q]), q = 1 .. nops(C(B(n)))) end proc: seq(c(n), n = 1 .. 59); # Emeric Deutsch, May 09 2015
    # second Maple program:
    a:= n-> (l-> mul(ithprime(add(`if`(jAlois P. Heinz, Sep 30 2017
  • Mathematica
    A122111[1] = 1; A122111[n_] := Module[{l = #, m = 0}, Times @@ Power @@@ Table[l -= m; l = DeleteCases[l, 0]; {Prime@Length@l, m = Min@l}, Length@Union@l]] &@Catenate[ConstantArray[PrimePi[#1], #2] & @@@ FactorInteger@n]; Array[A122111, 60] (* JungHwan Min, Aug 22 2016 *)
    a[n_] := Function[l, Product[Prime[Sum[If[jJean-François Alcover, Sep 23 2020, after Alois P. Heinz *)
  • PARI
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m)); \\ Antti Karttunen, Jul 20 2020
    
  • Python
    from sympy import factorint, prevprime, prime, primefactors
    from operator import mul
    def a001222(n): return 0 if n==1 else a001222(n/primefactors(n)[0]) + 1
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a105560(n): return 1 if n==1 else prime(a001222(n))
    def a(n): return 1 if n==1 else a105560(n)*a(a064989(n))
    [a(n) for n in range(1, 101)] # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000040 (A001222 n)) (A122111 (A064989 n)))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (A000079 (A241917 n)) (A003961 (A122111 (A052126 n))))))
    ;; Antti Karttunen, May 12 2014
    
  • Scheme
    ;; Uses Antti Karttunen's IntSeq-library.
    (definec (A122111 n) (if (<= n 1) n (* (expt (A000040 (A071178 n)) (A241919 n)) (A242378bi (A071178 n) (A122111 (A051119 n))))))
    ;; Antti Karttunen, May 12 2014
    

Formula

From Antti Karttunen, May 12-19 2014: (Start)
a(1) = 1, a(p_i) = 2^i, and for other cases, if n = p_i1 * p_i2 * p_i3 * ... * p_{k-1} * p_k, where p's are primes, not necessarily distinct, sorted into nondescending order so that i1 <= i2 <= i3 <= ... <= i_{k-1} <= ik, then a(n) = 2^(ik-i_{k-1}) * 3^(i_{k-1}-i_{k-2}) * ... * p_{i_{k-1}}^(i2-i1) * p_ik^(i1).
This can be implemented as a recurrence, with base case a(1) = 1,
and then using any of the following three alternative formulas:
a(n) = A105560(n) * a(A064989(n)) = A000040(A001222(n)) * a(A064989(n)). [Cf. the formula for A242424.]
a(n) = A000079(A241917(n)) * A003961(a(A052126(n))).
a(n) = (A000040(A071178(n))^A241919(n)) * A242378(A071178(n), a(A051119(n))). [Here ^ stands for the ordinary exponentiation, and the bivariate function A242378(k,n) changes each prime p(i) in the prime factorization of n to p(i+k), i.e., it's the result of A003961 iterated k times starting from n.]
a(n) = 1 + A075157(A129594(A075158(n-1))). [Follows from the commutativity with A241909, please see the comments section.]
(End)
From Antti Karttunen, Jul 31 2014: (Start)
As a composition of related permutations:
a(n) = A153212(A242419(n)) = A242419(A153212(n)).
a(n) = A241909(A241916(n)) = A241916(A241909(n)).
a(n) = A243505(A048673(n)).
a(n) = A064216(A243506(n)).
Other identities. For all n >= 1, the following holds:
A006530(a(n)) = A105560(n). [The latter sequence gives greatest prime factor of the n-th term].
a(2n)/a(n) = A105560(2n)/A105560(n), which is equal to A003961(A105560(n))/A105560(n) when n > 1.
A243505(n) = A052126(a(2n-1)) = A052126(a(4n-2)).
A066829(n) = A244992(a(n)) and vice versa, A244992(n) = A066829(a(n)).
A243503(a(n)) = A243503(n). [Because partition conjugation does not change the partition size.]
A238690(a(n)) = A238690(n). - per Matthew Vandermast's note in that sequence.
A238745(n) = a(A181819(n)) and a(A238745(n)) = A181819(n). - per Matthew Vandermast's note in A238745.
A181815(n) = a(A181820(n)) and a(A181815(n)) = A181820(n). - per Matthew Vandermast's note in A181815.
(End)
a(n) = A181819(A108951(n)). [Prime shadow of the primorial inflation of n] - Antti Karttunen, Apr 29 2022

A069799 The number obtained by reversing the sequence of nonzero exponents in the prime factorization of n with respect to distinct primes present, as ordered by their indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 13, 14, 15, 16, 17, 12, 19, 50, 21, 22, 23, 54, 25, 26, 27, 98, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 250, 41, 42, 43, 242, 75, 46, 47, 162, 49, 20, 51, 338, 53, 24, 55, 686, 57, 58, 59, 150, 61, 62, 147, 64, 65
Offset: 1

Views

Author

Amarnath Murthy, Apr 13 2002

Keywords

Comments

Equivalent description nearer to the old name: a(n) is a number obtained by reversing the indices of the primes present in the prime factorization of n, from the smallest to the largest, while keeping the nonzero exponents of those same primes at their old positions.
This self-inverse permutation of natural numbers fixes the numbers in whose prime factorization the sequence of nonzero exponents form a palindrome: A242414.
Integers which are changed are A242416.
Considered as a function on partitions encoded by the indices of primes in the prime factorization of n (as in table A112798), this implements an operation which reverses the order of vertical line segments of the "steps" in Young (or Ferrers) diagram of a partition, but keeps the order of horizontal line segments intact. Please see the last example in the example section.

Examples

			a(24) = 54 as 24 = p_1^3 * p_2^1 = 2^3 * 3^1 and 54 = p_1^1 * p_2^3 = 2 * 3^3.
For n = 2200, we see that it encodes the partition (1,1,1,3,3,5) in A112798 as 2200 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5 = 2^3 * 5^2 * 11. This in turn corresponds to the following Young diagram in French notation:
   _
  | |
  | |
  | |_ _
  |     |
  |     |_ _
  |_ _ _ _ _|
Reversing the order of vertical line segment lengths (3,2,1)  to (1,2,3), but keeping the order of horizontal line segment lengths as (1,2,2), we get a new Young diagram
   _
  | |_ _
  |     |
  |     |_ _
  |         |
  |         |
  |_ _ _ _ _|
which represents the partition (1,3,3,5,5,5), encoded in A112798 by p_1 * p_3^2 * p_5^3 = 2 * 5^2 * 11^3 = 66550, thus a(2200) = 66550.
		

Crossrefs

A242414 gives the fixed points and A242416 is their complement.
{A000027, A069799, A242415, A242419} form a 4-group.
The set of permutations {A069799, A105119, A225891} generates an infinite dihedral group.

Programs

  • Haskell
    a069799 n = product $
                zipWith (^) (a027748_row n) (reverse $ a124010_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A069799 n) (let ((pf (ifactor n))) (apply * (map expt (uniq pf) (reverse (multiplicities pf))))))
    (define (ifactor n) (cond ((< n 2) (list)) (else (sort (factor n) <))))
    (define (uniq lista) (let loop ((lista lista) (z (list))) (cond ((null? lista) (reverse! z)) ((and (pair? z) (equal? (car z) (car lista))) (loop (cdr lista) z)) (else (loop (cdr lista) (cons (car lista) z))))))
    (define (multiplicities lista) (let loop ((mults (list)) (lista lista) (prev #f)) (cond ((not (pair? lista)) (reverse! mults)) ((equal? (car lista) prev) (set-car! mults (+ 1 (car mults))) (loop mults (cdr lista) prev)) (else (loop (cons 1 mults) (cdr lista) (car lista))))))
    ;; Antti Karttunen, May 24 2014
    
  • Maple
    A069799 := proc(n) local e,j; e := ifactors(n)[2]:
    mul (e[j][1]^e[nops(e)-j+1][2], j=1..nops(e)) end:
    seq (A069799(i), i=1..40);
    # Peter Luschny, Jan 17 2011
  • Mathematica
    f[n_] := Block[{a = Transpose[ FactorInteger[n]], m = n}, If[ Length[a] == 2, Apply[ Times, a[[1]]^Reverse[a[[2]] ]], m]]; Table[ f[n], {n, 1, 65}]
  • PARI
    a(n) = {my(f = factor(n)); my(g = f); my(nbf = #f~); for (i=1, nbf, g[i, 1] = f[nbf-i+1, 1];); factorback(g);} \\ Michel Marcus, Jul 02 2015

Formula

If n = p_a^e_a * p_b^e_b * ... * p_j^e_j * p_k^e_k, where p_a < ... < p_k are distinct primes of the prime factorization of n (sorted into ascending order), and e_a, ..., e_k are their nonzero exponents, then a(n) = p_a^e_k * p_b^e_j * ... * p_j^e_b * p_k^e_a.
a(n) = product(A027748(o(n)+1-k)^A124010(k): k=1..o(n)) = product(A027748(k)^A124010(o(n)+1-k): k=1..o(n)), where o(n) = A001221(n). - Reinhard Zumkeller, Apr 27 2013
From Antti Karttunen, Jun 01 2014: (Start)
Can be obtained also by composing/conjugating related permutations:
a(n) = A242415(A242419(n)) = A242419(A242415(n)).
(End)

Extensions

Edited, corrected and extended by Robert G. Wilson v and Vladeta Jovovic, Apr 15 2002
Definition corrected by Reinhard Zumkeller, Apr 27 2013
Definition again reworded, Comments section edited and Young diagram examples added by Antti Karttunen, May 30 2014

A242378 Square array read by antidiagonals: to obtain A(i,j), replace each prime factor prime(k) in prime factorization of j with prime(k+i).

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 5, 5, 1, 0, 5, 9, 7, 7, 1, 0, 6, 7, 25, 11, 11, 1, 0, 7, 15, 11, 49, 13, 13, 1, 0, 8, 11, 35, 13, 121, 17, 17, 1, 0, 9, 27, 13, 77, 17, 169, 19, 19, 1, 0, 10, 25, 125, 17, 143, 19, 289, 23, 23, 1, 0, 11, 21, 49, 343, 19, 221, 23, 361, 29, 29, 1, 0
Offset: 0

Views

Author

Antti Karttunen, May 12 2014

Keywords

Comments

Each row i is a multiplicative function, being in essence "the i-th power" of A003961, i.e., A(i,j) = A003961^i (j). Zeroth power gives an identity function, A001477, which occurs as the row zero.
The terms in the same column have the same prime signature.
The array is read by antidiagonals: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ... .

Examples

			The top-left corner of the array:
  0,   1,   2,   3,   4,   5,   6,   7,   8, ...
  0,   1,   3,   5,   9,   7,  15,  11,  27, ...
  0,   1,   5,   7,  25,  11,  35,  13, 125, ...
  0,   1,   7,  11,  49,  13,  77,  17, 343, ...
  0,   1,  11,  13, 121,  17, 143,  19,1331, ...
  0,   1,  13,  17, 169,  19, 221,  23,2197, ...
...
A(2,6) = A003961(A003961(6)) = p_{1+2} * p_{2+2} = p_3 * p_4 = 5 * 7 = 35, because 6 = 2*3 = p_1 * p_2.
		

Crossrefs

Taking every second column from column 2 onward gives array A246278 which is a permutation of natural numbers larger than 1.
Transpose: A242379.
Row 0: A001477, Row 1: A003961 (from 1 onward), Row 2: A357852 (from 1 onward), Row 3: A045968 (from 7 onward), Row 4: A045970 (from 11 onward).
Column 2: A000040 (primes), Column 3: A065091 (odd primes), Column 4: A001248 (squares of primes), Column 6: A006094 (products of two successive primes), Column 8: A030078 (cubes of primes).
Excluding column 0, a subtable of A297845.
Permutations whose formulas refer to this array: A122111, A241909, A242415, A242419, A246676, A246678, A246684.

Formula

A(0,j) = j, A(i,0) = 0, A(i > 0, j > 0) = A003961(A(i-1,j)).
For j > 0, A(i,j) = A297845(A000040(i+1),j) = A297845(j,A000040(i+1)). - Peter Munn, Sep 02 2025

A242415 Reverse the deltas of indices of distinct primes in the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 11, 12, 13, 35, 10, 16, 17, 18, 19, 45, 21, 77, 23, 24, 25, 143, 27, 175, 29, 30, 31, 32, 55, 221, 14, 36, 37, 323, 91, 135, 41, 105, 43, 539, 20, 437, 47, 48, 49, 75, 187, 1573, 53, 54, 33, 875, 247, 667, 59, 60, 61, 899, 63, 64, 65
Offset: 1

Views

Author

Antti Karttunen, May 24 2014

Keywords

Comments

This self-inverse permutation (involution) of natural numbers preserves both the total number of prime divisors and the (index of) largest prime factor of n, i.e., for all n it holds that A001222(a(n)) = A001222(n) and A006530(a(n)) = A006530(n) [equally: A061395(a(n)) = A061395(n)]. It also preserves the exponent of the largest prime: A053585(a(n)) = A053585(n).
From the above it follows, that this fixes prime powers (A000961), among other numbers.
Considered as a function on partitions encoded by the indices of primes in the prime factorization of n (as in table A112798), this implements an operation which reverses the order of horizontal line segments of the "steps" in Young (or Ferrers) diagram of a partition, but keeps the order of vertical line segments intact. Please see the last example in the example section and compare also to the comments given in A242419.

Examples

			For n = 10 = 2*5 = p_1 * p_3, we get p_(3-1) * p_3 = 3 * 5 = 15, thus a(10) = 15.
For n = 20 = 2*2*5 = p_1^2 * p_3^1, we get p_(3-1)^2 * p_3^1 = 3^2 * 5 = 45, thus a(20) = 45.
For n = 84 = 2*2*3*7 = p_1^2 * p_2 * p_4, when we reverse the deltas of indices, but keep the exponents same, we get p_(4-2)^2 * p_(4-1) * p_4 = p_2^2 * p_3 * p_4 = 3^2 * 5 * 7 = 315, thus a(84) = 315.
For n = 2200, we see that it encodes the partition (1,1,1,3,3,5) in A112798 as 2200 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5 = 2^3 * 5^2 * 11. This in turn corresponds to the following Young diagram in French notation:
   _
  | |
  | |
  | |_ _
  |     |
  |     |_ _
  |_ _ _ _ _|
Reversing the order of horizontal line segment lengths (1,2,2) to (2,2,1), but keeping the order of vertical line segment lengths as (3,2,1), we get a new Young diagram
   _ _
  |   |
  |   |
  |   |_ _
  |       |
  |       |_
  |_ _ _ _ _|
which represents the partition (2,2,2,4,4,5), encoded in A112798 by p_2^3 * p_4^2 * p_5^1 = 3^3 * 7^2 * 11 = 14553, thus a(2200) = 14553.
		

Crossrefs

Formula

If n = p_a^e_a * p_b^e_b * ... * p_h^e_h * p_i^e_i * p_j^e_j * p_k^e_k, where p_a < ... < p_k are distinct primes (sorted into ascending order) in the prime factorization of n, and e_a .. e_k are their nonzero exponents, then a(n) = p_{k-j}^e_a * p_{k-i}^e_b * p_{k-h}^e_c * ... * p_{k-a}^e_j * p_k^e_k.
As a recurrence: a(1) = 1, and for n>1, a(n) = (A000040(A241919(n))^A067029(n)) * A242378(A241919(n), a(A051119(A225891(n)))).
By composing/conjugating related permutations:
a(n) = A069799(A242419(n)) = A242419(A069799(n)).

A243057 If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, with p_a <= p_b <= ... <= p_k, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 1 and for k>=1, p_{k} = A000040(k).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 15, 11, 12, 13, 35, 10, 2, 17, 6, 19, 45, 21, 77, 23, 24, 5, 143, 3, 175, 29, 30, 31, 2, 55, 221, 14, 12, 37, 323, 91, 135, 41, 105, 43, 539, 20, 437, 47, 48, 7, 15, 187, 1573, 53, 6, 33, 875, 247, 667, 59, 90, 61, 899, 63, 2, 65, 385
Offset: 1

Views

Author

Antti Karttunen, May 31 2014

Keywords

Comments

A243058 gives all n such that a(n) = n (the fixed points of this sequence, which include primes).
A102750 gives such n that a(a(n)) = n. A243286 is the self-inverse permutation induced when the domain is restricted to A102750. Cf. also A242420.
A070003 gives all n such that a(a(n)) <> n. Another variant, A243059, is defined to be zero when n is one of the terms of A070003.

Examples

			For n = 9 = 3*3 = p_2 * p_2, we have a(n) = p_{3-3} * p_3 = 1*3 = 3. [Like all terms in A070003 this is an example of "degenerate case", where some p's in the product get index 0, and thus are set to 1 by convention used here.]
For n = 10 = 2*5 = p_1 * p_3, we have a(n) = p_{3-1} * p_3 = 3*5 = 15.
For n = 12 = 2*2*3 = p_1 * p_1 * p_2, we have a(n) = p_{2-1} * p{2-1} * p_2 = p_1^2 * p_2 = 12.
For n = 15 = 3*5 = p_2 * p_3, we have a(n) = p_{3-2} * p_3 = 2*5 = 10.
For n = 2200 = 2*2*2*5*5*11 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5, we have a(n) = p_{5-3} * p_{5-3} * p_{5-1} * p_{5-1} * p_{5-1} * p_5 = 3*3*7*7*7*11 = 33957.
For n = 33957 = 3*3*7*7*7*11 = p_2 * p_2 * p_4 * p_4 * p_4 * p_5, we have a(n) = p_{5-4} * p_{5-4} * p_{5-4} * p_{5-2} * p_{5-2} * p_5 = 2*2*2*5*5*11 = 2200.
		

Crossrefs

Fixed points: A243058 (includes primes).

Formula

If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, where p_a <= p_b <= ... <= p_k are (not necessarily distinct) primes (sorted into nondescending order) in the prime factorization of n, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 1 and for k>=1, p_{k} = A000040(k).
a(1)=1, and for n>1, a(n) = p_{A243056(n)} * a(A032742(n)). Here p_{k} stands for 1 when k=0, and otherwise for the k-th prime, A000040(k).
For all n, a(n) = a(A243074(n)).
For all k in A102750, a(k) = A242420(k).

A153212 A permutation of the natural numbers: in the prime factorization of n, swap each prime's index difference (from the previous distinct prime that divides n) and the prime's power.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 5, 9, 18, 32, 15, 64, 54, 12, 7, 128, 10, 256, 75, 36, 162, 512, 35, 27, 486, 25, 375, 1024, 30, 2048, 11, 108, 1458, 24, 21, 4096, 4374, 324, 245, 8192, 150, 16384, 1875, 45, 13122, 32768, 77, 81, 50, 972, 9375, 65536, 14, 72, 1715, 2916, 39366, 131072, 105, 262144, 118098, 225, 13
Offset: 1

Views

Author

Luchezar Belev (l_belev(AT)yahoo.com), Dec 20 2008

Keywords

Comments

In order for the "index difference" to make sense, we consider the factorization to be sorted with respect to the primes but not the powers to which they are raised; that is, first comes the smallest prime and each subsequent prime is larger than the previous disregarding their powers.
For every n it is true that a(a(n)) = n.
From Antti Karttunen, May 29 2014: (Start)
In other words, this is a self-inverse permutation (involution) of natural numbers.
This permutation maps primes (A000040) to the powers of two larger than one (A000079(n>=1)) and vice versa.
The term a(1) = 1 was added on the grounds that as 1 has an empty prime factorization, there is nothing to swap, thus it stays same. It is also needed as a base case for the given recurrence.
Considered as a function on partitions encoded by the indices of primes in the prime factorization of n (as in table A112798), this implements an operation which exchanges the horizontal and vertical line segment of each "step" in Young (or Ferrers) diagram of a partition. Please see the last example in the example section.
(End)

Examples

			For n = 10 we have 10 = 2^1 * 5^1 = p(1)^1 * p(3)^1 then a(10) = p(1)^1 * p(2)^2 = 2^1 * 3^2 = 18.
For n = 18 we have 18 = 2^1 * 3^2 = p(1)^1 * p(2)^2 then a(18) = p(1)^1 * p(3)^1 = 2^1 * 5^1 = 10.
For n = 19 we have 19 = 19^1 = p(8)^1 then a(19) = p(1)^8 = 2^8 = 256.
For n = 2200, we see that it encodes the partition (1,1,1,3,3,5) in A112798 as 2200 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5 = 2^3 * 5^2 * 11. This in turn corresponds to the following Young diagram in French notation:
   _
  | |
  | |
  | |_ _
  |     |
  |     |_ _
  |_ _ _ _ _|
Exchanging the order of the horizontal and vertical line segment of each "step", results the following Young diagram:
   _ _ _
  |     |_ _
  |         |
  |         |_
  |           |
  |_ _ _ _ _ _|
which represents the partition (3,5,5,6,6), encoded in A112798 by p_3 * p_5^2 * p_6^2 = 5 * 11^2 * 13^2 = 102245, thus a(2200) = 102245.
		

Crossrefs

Fixed points: A242421.
{A000027, A122111, A153212, A242419} form a 4-group.

Programs

  • PARI
    a(n) = {my(f = factor(n)); my(g = f); for (i=1, #f~, if (i==1, g[i,1] = prime(f[i,2]), g[i,1] = prime(f[i,2]+ primepi(g[i-1,1]))); if (i==1, g[i,2] = primepi(f[i,1]), g[i,2] = primepi(f[i,1]) - primepi(f[i-1,1]));); factorback(g);} \\ Michel Marcus, Dec 16 2014

Formula

Denote the i-th prime with p(i): p(1)=2, p(2)=3, p(3)=5, p(4)=7, etc. Let n = p(a1)^b1 * p(a2)^b2 * ... * p(ak)^bk is the factorization of n where p(i)^j is the i-th prime raised to power j. As mentioned above, we assume that the primes are sorted, i.e., a1 < a2 < a3 ... < ak. Then a(n) = p(c1)^d1 * p(c2)^d2 * ... * p(ck)^dk where c1 = b1 and c(i) = b(i) + c(i-1) for i > 1 d1 = a1 and d(i) = a(i) - a(i-1) for i > 1.
From Antti Karttunen, May 16 2014: (Start)
a(1) = 1 and for n>1, let r = a(A051119(n)). Then a(n) = r * (A000040(A061395(r)+A071178(n)) ^ A241919(n)).
a(n) = A122111(A242419(n)) = A242419(A122111(n)).
(End)

Extensions

Term a(1)=1 prepended, and also more terms computed by Antti Karttunen, May 16 2014

A242420 Self-inverse permutation of positive integers: a(n) = (A006530(n)^(A071178(n)-1)) * A243057(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 11, 12, 13, 35, 10, 16, 17, 18, 19, 45, 21, 77, 23, 24, 25, 143, 27, 175, 29, 30, 31, 32, 55, 221, 14, 36, 37, 323, 91, 135, 41, 105, 43, 539, 20, 437, 47, 48, 49, 75, 187, 1573, 53, 54, 33, 875, 247, 667, 59, 90, 61, 899, 63, 64, 65
Offset: 1

Views

Author

Antti Karttunen, May 31 2014

Keywords

Comments

This self-inverse permutation (involution) of positive integers preserves both the total number of prime divisors and the (index of) largest prime factor of n, i.e., for all n it holds that A001222(a(n)) = A001222(n) and A006530(a(n)) = A006530(n) [equally: A061395(a(n)) = A061395(n)].
It also preserves the exponent of the largest prime factor (A071178), from which follows that the sequence A102750 is closed with respect to this permutation, i.e., for all n in A102750, a(n) is either same n or some other term of A102750.
Considered as an operation on partitions encoded by the indices of primes in the prime factorization of n (as in table A112798), this implements a self-inverse bijection which is a composition of the effects of A242419 and A225891. (Or equally: A105119 and A242419). For details, please see the respective Comments sections and/or Example section of this entry.

Examples

			For n = 2200, we see that it encodes the partition (1,1,1,3,3,5) in A112798 as 2200 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5 = 2^3 * 5^2 * 11. This in turn corresponds to the following Young diagram in French notation:
   _
  | |
  | |
  | |_ _
  |     |
  |     |_ _
  |_ _ _ _ _|
First we apply A242419, which reverses the order of "steps", so that each horizontal and vertical line segment centered around a "convex corner" moves as a whole, so that the first stair from the top (one unit wide and three units high) is moved to the last position, the second one (two units wide and two units high) stays in the middle, and the original bottom step (two units wide and one unit high) will be the new topmost step, thus we get the following Young diagram:
   _ _
  |   |_ _
  |       |
  |       |_
  |         |
  |         |
  |_ _ _ _ _|
which represents the partition (2,4,4,5,5,5), encoded in A112798 by p_2 * p_4^2 * p_5^3 = 3 * 7^2 * 11^3 = 195657.
Then we apply A225891, which rotates the exponents of distinct primes in the factorization of n one left, in this context the vertical line segments one step up, with the top-one going to the bottomost, and so we get:
   _ _
  |   |
  |   |_ _
  |       |
  |       |
  |       |_
  |_ _ _ _ _|
which represents the partition (2,2,4,4,4,5), encoded in A112798 by p_2^2 * p_4^3 * p_5 = 3^2 * 7^3 * 11 = 33957, thus a(2200) = 33957.
		

Crossrefs

Programs

Formula

a(n) = (A006530(n)^(A071178(n)-1)) * A243057(n).
For all k in A102750, a(k) = A243057(k) = A243059(k).
By composing related permutations:
a(n) = A225891(A242419(n)) = A242419(A105119(n)).

A243059 If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, with p_a <= p_b <= ... <= p_k, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 0 and for k>=1, p_{k} = A000040(k). a(1)=1 by convention.

Original entry on oeis.org

1, 2, 3, 0, 5, 6, 7, 0, 0, 15, 11, 12, 13, 35, 10, 0, 17, 0, 19, 45, 21, 77, 23, 24, 0, 143, 0, 175, 29, 30, 31, 0, 55, 221, 14, 0, 37, 323, 91, 135, 41, 105, 43, 539, 20, 437, 47, 48, 0, 0, 187, 1573, 53, 0, 33, 875, 247, 667, 59, 90, 61, 899, 63, 0, 65, 385, 67, 2873, 391, 70, 71, 0
Offset: 1

Views

Author

Antti Karttunen, May 31 2014

Keywords

Comments

A243058 gives all n such that a(n) = n (the fixed points of this sequence, which include primes).
Differs from A243057 in that the "degenerate cases" A070003 are here zeros, but is otherwise equal to it (at the points given by A102750), i.e. for all n, a(A102750(n)) = A243057(A102750(n)) = A242420(A102750(n)).

Examples

			For n = 9 = 3*3 = p_2 * p_2, we have a(n) = p_{3-3} * p_3 = 0*3 = 0. [Like all terms in A070003 this is an example of "degenerate case", where some p's in the product get index 0, and thus are set to 0 by the convention used here.]
For n = 10 = 2*5 = p_1 * p_3, we have a(n) = p_{3-1} * p_3 = 3*5 = 15.
For n = 12 = 2*2*3 = p_1 * p_1 * p_2, we have a(n) = p_{2-1} * p{2-1} * p_2 = p_1^2 * p_2 = 12.
For n = 15 = 3*5 = p_2 * p_3, we have a(n) = p_{3-2} * p_3 = 2*5 = 10.
For n = 2200 = 2*2*2*5*5*11 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5, we have a(n) = p_{5-3} * p_{5-3} * p_{5-1} * p_{5-1} * p_{5-1} * p_5 = 3*3*7*7*7*11 = 33957.
For n = 33957 = 3*3*7*7*7*11 = p_2 * p_2 * p_4 * p_4 * p_4 * p_5, we have a(n) = p_{5-4} * p_{5-4} * p_{5-4} * p_{5-2} * p_{5-2} * p_5 = 2*2*2*5*5*11 = 2200.
		

Crossrefs

Fixed points: A243058 (includes primes).
Positions of zeros: A070003.

Formula

a(1)=1, and for n>1, a(n) = q_{A243056(n)} * a(A032742(n)). Here q_{k} stands for 0 when k=0, and otherwise for the k-th prime, A000040(k).
If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, where p_a <= p_b <= ... <= p_k are (not necessarily distinct) primes (sorted into nondescending order) in the prime factorization of n, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 0 and for k>=1, p_{k} = A000040(k).
Showing 1-9 of 9 results.