A243057
If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, with p_a <= p_b <= ... <= p_k, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 1 and for k>=1, p_{k} = A000040(k).
Original entry on oeis.org
1, 2, 3, 2, 5, 6, 7, 2, 3, 15, 11, 12, 13, 35, 10, 2, 17, 6, 19, 45, 21, 77, 23, 24, 5, 143, 3, 175, 29, 30, 31, 2, 55, 221, 14, 12, 37, 323, 91, 135, 41, 105, 43, 539, 20, 437, 47, 48, 7, 15, 187, 1573, 53, 6, 33, 875, 247, 667, 59, 90, 61, 899, 63, 2, 65, 385
Offset: 1
For n = 9 = 3*3 = p_2 * p_2, we have a(n) = p_{3-3} * p_3 = 1*3 = 3. [Like all terms in A070003 this is an example of "degenerate case", where some p's in the product get index 0, and thus are set to 1 by convention used here.]
For n = 10 = 2*5 = p_1 * p_3, we have a(n) = p_{3-1} * p_3 = 3*5 = 15.
For n = 12 = 2*2*3 = p_1 * p_1 * p_2, we have a(n) = p_{2-1} * p{2-1} * p_2 = p_1^2 * p_2 = 12.
For n = 15 = 3*5 = p_2 * p_3, we have a(n) = p_{3-2} * p_3 = 2*5 = 10.
For n = 2200 = 2*2*2*5*5*11 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5, we have a(n) = p_{5-3} * p_{5-3} * p_{5-1} * p_{5-1} * p_{5-1} * p_5 = 3*3*7*7*7*11 = 33957.
For n = 33957 = 3*3*7*7*7*11 = p_2 * p_2 * p_4 * p_4 * p_4 * p_5, we have a(n) = p_{5-4} * p_{5-4} * p_{5-4} * p_{5-2} * p_{5-2} * p_5 = 2*2*2*5*5*11 = 2200.
Fixed points:
A243058 (includes primes).
A243059
If n = p_a * p_b * ... * p_h * p_i * p_j * p_k, with p_a <= p_b <= ... <= p_k, then a(n) = p_{k-j} * p_{k-i} * p_{k-h} * ... * p_{k-a} * p_k, where p_{0} = 0 and for k>=1, p_{k} = A000040(k). a(1)=1 by convention.
Original entry on oeis.org
1, 2, 3, 0, 5, 6, 7, 0, 0, 15, 11, 12, 13, 35, 10, 0, 17, 0, 19, 45, 21, 77, 23, 24, 0, 143, 0, 175, 29, 30, 31, 0, 55, 221, 14, 0, 37, 323, 91, 135, 41, 105, 43, 539, 20, 437, 47, 48, 0, 0, 187, 1573, 53, 0, 33, 875, 247, 667, 59, 90, 61, 899, 63, 0, 65, 385, 67, 2873, 391, 70, 71, 0
Offset: 1
For n = 9 = 3*3 = p_2 * p_2, we have a(n) = p_{3-3} * p_3 = 0*3 = 0. [Like all terms in A070003 this is an example of "degenerate case", where some p's in the product get index 0, and thus are set to 0 by the convention used here.]
For n = 10 = 2*5 = p_1 * p_3, we have a(n) = p_{3-1} * p_3 = 3*5 = 15.
For n = 12 = 2*2*3 = p_1 * p_1 * p_2, we have a(n) = p_{2-1} * p{2-1} * p_2 = p_1^2 * p_2 = 12.
For n = 15 = 3*5 = p_2 * p_3, we have a(n) = p_{3-2} * p_3 = 2*5 = 10.
For n = 2200 = 2*2*2*5*5*11 = p_1 * p_1 * p_1 * p_3 * p_3 * p_5, we have a(n) = p_{5-3} * p_{5-3} * p_{5-1} * p_{5-1} * p_{5-1} * p_5 = 3*3*7*7*7*11 = 33957.
For n = 33957 = 3*3*7*7*7*11 = p_2 * p_2 * p_4 * p_4 * p_4 * p_5, we have a(n) = p_{5-4} * p_{5-4} * p_{5-4} * p_{5-2} * p_{5-2} * p_5 = 2*2*2*5*5*11 = 2200.
Fixed points:
A243058 (includes primes).
A242413
Numbers in whose prime factorization the first differences of indices of distinct primes form a palindrome; fixed points of A242415.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 48, 49, 53, 54, 59, 60, 61, 63, 64, 65, 67, 70, 71, 72, 73, 79, 81, 83, 89, 90, 96, 97, 101, 103, 107, 108, 109, 113, 120, 121, 125, 127, 128, 131, 133, 137, 139, 140, 144
Offset: 1
1 is present because it has an empty factorization, so both the sequence of the prime indices and their first differences are empty, and empty sequences are palindromes as well.
12 = 2*2*3 = p_1^2 * p_2 is present, as the first differences (deltas) of prime indices (1-0, 2-1) = (1,1) form a palindrome.
60 = 2*2*3*5 = p_1^2 * p_2 * p_3 is present, as the deltas of prime indices (1-0, 2-1, 3-2) = (1,1,1) form a palindrome.
61 = p_18 is present, as the deltas of prime indices, (18), form a palindrome.
144 = 2^4 * 3^2 = p_1^4 * p_2^2 is present, as the deltas of prime indices (1-0, 2-1) = (1,1) form a palindrome.
Also, any of the cases mentioned in the Example section of A242417 as being present there, are also present in this sequence.
Differs from
A243068 for the first time at n=36, where a(36)=60, while
A243068(36)=61.
A242417
Numbers in whose prime factorization both the first differences of indices of distinct primes and their exponents form a palindrome; fixed points of A242419.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 61, 64, 65, 67, 70, 71, 73, 79, 81, 83, 89, 90, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 133, 137, 139, 149, 151, 154, 157, 163, 165, 167, 169
Offset: 1
1 is present because it has an empty factorization, so both sequences are empty, thus palindromes.
3 = p_2^1 is present, as both the sequence of the first differences (deltas) of prime indices (2-0) = (2) and the exponents (1) are palindromes.
6 = p_1^1 * p_2^1 is present, as both the deltas of prime indices (1-0, 2-1) = (1,1) and the exponents (1,1) form a palindrome.
8 = p_1^3 is present, as both the deltas of prime indices (1) and the exponents (3) form a palindrome.
300 = 4*3*25 = p_1^2 * p_2^1 * p_3^2 is present, as both the deltas of prime indices (1-0, 2-1, 3-2) = (1,1,1) 1, 2 and the exponents (2,1,2), form a palindrome.
144 = 2^4 * 3^2 = p_1^4 * p_2^2 is NOT present, as although the deltas of prime indices (1-0, 2-1) = (1,1) are palindrome, the sequence of exponents (4,2) do NOT form a palindrome.
441 = 9*49 = p_2^2 * p_4^2 is present, as both the deltas of prime indices (2-0, 4-2) = (2,2) and the exponents (2,2) form a palindrome.
30030 = 2*3*5*7*11*13 = p_1 * p_2 * p_3 * p_4 * p_5 * p_6 is present, as the exponents are all ones, and the deltas of indices, (6-5,5-4,4-3,3-2,2-1,1-0) = (1,1,1,1,1,1) likewise are all ones, thus both sequences form a palindrome. This is true for all primorial numbers, A002110.
47775 = 3*5*5*7*7*13 = p_2^1 * p_3^2 * p_4^2 * p_6^1 is present, as the deltas of indices (6-4,4-3,3-2,2-0) = (2,1,1,2) and the exponents (1,2,2,1) both form a palindrome.
90000 = 2*2*2*2*3*3*5*5*5*5 = p_1^4 * p_2^2 * p_3^4 is present, as the deltas of indices (3-2,2-1,1-0) = (1,1,1) and the exponents (4,2,4) both form a palindrome.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 32, 36, 37, 41, 43, 47, 48, 49, 53, 54, 59, 61, 63, 64, 65, 67, 70, 71, 72, 73, 79, 81, 83, 89, 96, 97, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 133, 137, 139, 144
Offset: 1
4 = p_1^2 is present, as the first differences (deltas) of the prime indices (excluding the extra copies of the largest prime factor 2), form a palindrome: (1-0) = (1).
18 = 2*3*3 = p_1 * p_2 * p_2 is present, as the deltas of the indices of its nondistinct prime factors, (excluding the extra copies of the largest prime factor 3) form a palindrome: (1-0, 2-1) = (1,1).
60 = 2*2*3*5 = p_1 * p_1 * p_2 * p_3 is NOT present, as the deltas of prime indices (1-0, 1-1, 2-1, 3-2) = (1,0,1,1) do NOT form a palindrome.
Also, any of the cases mentioned in the Example section of A243058 as being present there, are also present in this sequence.
Differs from
A242413 for the first time at n=36, where a(36)=61, while
A242413(36)=60.
Showing 1-5 of 5 results.
Comments