A243254 Number of compositions of n into parts {3,4,5} when all parts 3,4 and 5 are present.
6, 0, 0, 12, 12, 12, 20, 30, 50, 60, 80, 120, 162, 225, 305, 401, 560, 763, 1017, 1365, 1834, 2484, 3328, 4420, 5936, 7943, 10593, 14148, 18828, 25092, 33468, 44517, 59214, 78734, 104698, 139232, 184889, 245532, 326177, 433052, 574841, 762856, 1012219, 1343160
Offset: 12
Examples
a(24) = 162 = 42 + 90 + 30: the tuples are (5433333) -> 7!/5! = 42, (554433) -> 6!/2!2!2! = 90, (544443) -> 6!/4! = 30.
Links
- Robert Israel, Table of n, a(n) for n = 12..7366
- Index entries for linear recurrences with constant coefficients, signature (-2, -2, 2, 9, 16, 14, -2, -29, -52, -52, -20, 34, 82, 97, 67, 7, -53, -84, -77, -43, -4, 22, 29, 23, 13, 5, 1).
Programs
-
Maple
N:= 100; C34:= Vector(N): C35:= Vector(N): C45:= Vector(N): C345:= Vector(N): C1:= Vector(N,i -> numboccur([i mod 3, i mod 4, i mod 5],0)): C34[3]:= 1: C34[4]:= 1: C35[3]:= 1: C35[5]:= 1: C45[4]:= 1: C45[5]:= 1: C345[3]:= 1: C345[4]:= 1: C345[5]:= 1: for n from 6 to N do C34[n]:= C34[n-3] + C34[n-4]; C35[n]:= C35[n-3] + C35[n-5]; C45[n]:= C45[n-4] + C45[n-5]; C345[n]:= C345[n-3]+C345[n-4]+C345[n-5]; od: A:= C345 - C34 - C35 - C45 + C1: convert(A[12..N],list); # Robert Israel, Aug 18 2014
-
Mathematica
CoefficientList[Series[x^12*(x^15 + 5*x^14 + 13*x^13 + 24*x^12 + 34*x^11 + 36*x^10 + 24*x^9 - 26*x^7 - 40*x^6 - 36*x^5 - 18*x^4 + 12*x^2 + 12*x +6)/((1 - x)*(x + 1)*(x^2 + 1)*(x^3 + x^2 - 1)*(x^4 + x^3 - 1)*(x^5 + x^3 - 1)*(x^2 + x + 1)*(x^5 + x^4 - 1)*(x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Aug 02 2014 *) Drop[LinearRecurrence[{-2,-2,2,9,16,14,-2,-29,-52,-52,-20,34,82,97,67,7,-53,-84,-77,-43,-4,22,29,23,13,5,1},{0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,12,12,12,20,30,50,60,80,120,162,225,305,401},60],12] (* Harvey P. Dale, Jun 06 2025 *)
Formula
G.f.: -(x^15 +5*x^14 +13*x^13 +24*x^12 +34*x^11 +36*x^10 +24*x^9-26*x^7 -40*x^6 -36*x^5 -18*x^4 +12*x^2 +12*x +6) *x^12 /((x-1) *(x+1) *(x^2+1) *(x^3+x^2-1) *(x^4+x^3-1) *(x^5+x^3-1) *(x^2+x+1) *(x^5+x^4-1) *(x^4+x^3+x^2+x+1)). - Alois P. Heinz, Jul 30 2014
Comments