cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243254 Number of compositions of n into parts {3,4,5} when all parts 3,4 and 5 are present.

Original entry on oeis.org

6, 0, 0, 12, 12, 12, 20, 30, 50, 60, 80, 120, 162, 225, 305, 401, 560, 763, 1017, 1365, 1834, 2484, 3328, 4420, 5936, 7943, 10593, 14148, 18828, 25092, 33468, 44517, 59214, 78734, 104698, 139232, 184889, 245532, 326177, 433052, 574841, 762856, 1012219, 1343160
Offset: 12

Views

Author

David Neil McGrath, Jul 30 2014

Keywords

Comments

Compositions of n from the set {3,4,5} that can be partitioned into the equivalence classes [345][34][45][35][3][4][5], where each class is defined by the relation "all elements are present".

Examples

			a(24) = 162 = 42 + 90 + 30: the tuples are (5433333) -> 7!/5! = 42, (554433) -> 6!/2!2!2! = 90, (544443) -> 6!/4! = 30.
		

Crossrefs

Programs

  • Maple
    N:= 100;
    C34:= Vector(N):
    C35:= Vector(N):
    C45:= Vector(N):
    C345:= Vector(N):
    C1:= Vector(N,i -> numboccur([i mod 3, i mod 4, i mod 5],0)):
    C34[3]:= 1: C34[4]:= 1:
    C35[3]:= 1: C35[5]:= 1:
    C45[4]:= 1: C45[5]:= 1:
    C345[3]:= 1: C345[4]:= 1: C345[5]:= 1:
    for n from 6 to N do
      C34[n]:= C34[n-3] + C34[n-4];
      C35[n]:= C35[n-3] + C35[n-5];
      C45[n]:= C45[n-4] + C45[n-5];
      C345[n]:= C345[n-3]+C345[n-4]+C345[n-5];
    od:
    A:= C345 - C34 - C35 - C45 + C1:
    convert(A[12..N],list); # Robert Israel, Aug 18 2014
  • Mathematica
    CoefficientList[Series[x^12*(x^15 + 5*x^14 + 13*x^13 + 24*x^12 + 34*x^11 + 36*x^10 + 24*x^9 - 26*x^7 - 40*x^6 - 36*x^5 - 18*x^4 + 12*x^2 + 12*x +6)/((1 - x)*(x + 1)*(x^2 + 1)*(x^3 + x^2 - 1)*(x^4 + x^3 - 1)*(x^5 + x^3 - 1)*(x^2 + x + 1)*(x^5 + x^4 - 1)*(x^4 + x^3 + x^2 + x + 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Aug 02 2014 *)
    Drop[LinearRecurrence[{-2,-2,2,9,16,14,-2,-29,-52,-52,-20,34,82,97,67,7,-53,-84,-77,-43,-4,22,29,23,13,5,1},{0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,12,12,12,20,30,50,60,80,120,162,225,305,401},60],12] (* Harvey P. Dale, Jun 06 2025 *)

Formula

a(n) = A017818(n-1) -A245492(n) -A245487(n) -A245527(n) -A022003(n) -A011765(n) -A112765(n).
G.f.: -(x^15 +5*x^14 +13*x^13 +24*x^12 +34*x^11 +36*x^10 +24*x^9-26*x^7 -40*x^6 -36*x^5 -18*x^4 +12*x^2 +12*x +6) *x^12 /((x-1) *(x+1) *(x^2+1) *(x^3+x^2-1) *(x^4+x^3-1) *(x^5+x^3-1) *(x^2+x+1) *(x^5+x^4-1) *(x^4+x^3+x^2+x+1)). - Alois P. Heinz, Jul 30 2014
a(n) = A017818(n) - A017817(n) - A052920(n) - A017827(n) + A079978(n) + A121262(n) + A079998(n). - Robert Israel, Aug 18 2014