cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243472 Primes p such that p^6 - p^5 - 1 is prime.

Original entry on oeis.org

2, 31, 101, 151, 181, 199, 229, 277, 307, 317, 379, 439, 479, 491, 647, 691, 797, 911, 997, 1039, 1051, 1181, 1291, 1367, 1381, 1471, 1511, 1549, 1657, 1709, 1847, 1867, 1987, 2081, 2099, 2111, 2207, 2467, 2621, 2707, 3041, 3221, 3259, 3541, 3571, 3581, 3769
Offset: 1

Views

Author

K. D. Bajpai, Jun 05 2014

Keywords

Examples

			31 appears in the sequence because it is prime and 31^6 - 31^5 - 1 = 858874529 is also prime.
101 appears in the sequence because it is prime and 101^6 - 101^5  - 1 = 1051010050099 is also prime.
		

Crossrefs

Programs

  • Maple
    A243472 := proc() local a, b; a:=ithprime(n); b:= a^6-a^5-1; if isprime (b) then RETURN (a); fi; end: seq(A243472 (), n=1..2000);
  • Mathematica
    c = 0;  Do[k=Prime[n]; If[PrimeQ[k^6-k^5-1], c++; Print[c," ",k]], {n,1,200000}];
    Select[Prime[Range[600]],PrimeQ[#^6-#^5-1]&] (* Harvey P. Dale, Jan 21 2015 *)
  • PARI
    s=[]; forprime(p=2, 4000, if(isprime(p^6-p^5-1), s=concat(s, p))); s \\ Colin Barker, Jun 06 2014