A243510 Number of ways the maximal number of domicules can be placed on an n X n square.
1, 1, 3, 58, 280, 170985, 3037561, 35203565096, 3263262629905, 580992839261272720, 326207195516663381931, 811740344447523575023878026, 3011882198082438957330143630563, 98662906581850761030365769529236858241, 2565014347691062208319404612723752103028288
Offset: 0
Keywords
Examples
a(2) = 3: +---+ +---+ +---+ |o-o| |o o| |o o| | | || || | X | |o-o| |o o| |o o| +---+ +---+ +---+. a(3) = 58: +-----+ +-----+ +-----+ |o-o o| |o o o| |o o-o| | || | X || | \ | |o o| |o o o| |o o o| || | | | || / | |o o-o| |o-o | |o o | +-----+ +-----+ +-----+ ... .
Links
- Eric Weisstein's World of Mathematics, Independent Edge Set
- Eric Weisstein's World of Mathematics, King Graph
- Eric Weisstein's World of Mathematics, Matching
- Eric Weisstein's World of Mathematics, Maximum Independent Edge Set
- Wikipedia, King's graph
Formula
a(n) = A243424(n,floor(n^2/2)).
Comments