A243528 Integers n such that p = 4n + 1, q = 4p + 3, r = 4q + 5, s = 4r + 7 and t = 4s + 9 are all prime.
1564, 4057, 4654, 5884, 26599, 30139, 37204, 66532, 74227, 80812, 98137, 113929, 124249, 138604, 245524, 249847, 250879, 299767, 309469, 315277, 340504, 346279, 359467, 362674, 367069, 401407, 410332, 435049, 437377, 438799, 537844, 550582, 579814, 587047
Offset: 1
Keywords
Examples
First 3 values of n, p, q, r, s and t: {1564, 6257, 25031, 100129, 400523, 1602101}, {4057, 16229, 64919, 259681, 1038731, 4154933}, {4654, 18617, 74471, 297889, 1191563, 4766261}.
Links
- Zak Seidov, Table of first 30 values of n, p, q, r, s, t.
Programs
-
Magma
A141291:=func
; [n: n in [1..10^6] | forall{i: i in [1..5] | IsPrime(4^i*n + A141291(i))}]; // Bruno Berselli, Jun 06 2014 -
Mathematica
pqrstQ[n_]:=Module[{p=4n+1,q,r,s},q=4p+3;r=4q+5;s=4r+7;AllTrue[{p,q,r,s,4s+9},PrimeQ]]; Select[Range[590000],pqrstQ] (* Harvey P. Dale, Jan 18 2024 *)
Comments