cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243659 Number of Sylvester classes of 3-packed words of degree n.

Original entry on oeis.org

1, 1, 5, 34, 267, 2279, 20540, 192350, 1853255, 18252079, 182924645, 1859546968, 19127944500, 198725331588, 2082256791048, 21979169545670, 233495834018591, 2494624746580655, 26786319835972799, 288915128642169250, 3128814683222599331, 34007373443388857999
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.

Crossrefs

Column k=3 of A336573.

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 1 else (4*(37604*n^5-158474*n^4+248391*n^3-178459*n^2+58042*n-6720)*a(n-1) - 3*(n-2)*(3*n-4)*(3*n-5)*(119*n^2-85*n+14)*a(n-2) )/ (12*n*(3*n-1)*(3*n+1)*(119*n^2-323*n+218)) fi; end:
    seq(a(n), n = 0..20); # Peter Bala, Sep 08 2024
  • Mathematica
    b[0] = 1; b[n_] := b[n] = 1/n Sum[Sum[2^(j-2i)(-1)^(i-j) Binomial[i, 3i-j] Binomial[i+j-1, i-1], {j, 0, 3i}] b[n-i], {i, 1, n}];
    a[n_] := b[n+1];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 27 2018, after Vladimir Kruchinin *)
  • Maxima
    a(n):=if n=0 then 1 else 1/n*sum(sum(2^(j-2*i)*(-1)^(i-j)*binomial(i,3*i-j)*binomial(i+j-1,i-1),j,0,3*i)*a(n-i),i,1,n); /* Vladimir Kruchinin, Apr 07 2017 */
    
  • PARI
    a(n) = if(n==0, 1, sum(i=1, n, a(n-i)*sum(j=0, 3*i, 2^(j-2*i)*(-1)^(i-j)*binomial(i,3*i-j)*binomial(i+j-1,i-1)))/n); \\ Seiichi Manyama, Jul 26 2020
    
  • PARI
    a(n) = my(A=1+x*O(x^n)); for(i=0, n, A=1-x*A^3*(1-2*A)); polcoeff(A, n); \\ Seiichi Manyama, Jul 26 2020
    
  • PARI
    a(n) = (-1)^n*sum(k=0, n, (-2)^k*binomial(n, k)*binomial(3*n+k+1, n)/(3*n+k+1)); \\ Seiichi Manyama, Jul 26 2020
    
  • PARI
    a(n) = (-1)^n*sum(k=0, n, (-2)^(n-k)*binomial(3*n+1, k)*binomial(4*n-k, n-k))/(3*n+1); \\ Seiichi Manyama, Jul 26 2020

Formula

Novelli-Thibon give an explicit formula in Eq. (182).
a(0) = 1 and a(n) = (1/n) * Sum_{i=1..n} ( Sum_{j=0..3*i} (2^(j-2*i)*(-1)^(i-j) * binomial(i,3*i-j)*binomial(i+j-1,i-1)) *a(n-i) ) for n > 0. - Vladimir Kruchinin, Apr 09 2017
From Seiichi Manyama, Jul 26 2020: (Start)
G.f. A(x) satisfies: A(x) = 1 - x * A(x)^3 * (1 - 2 * A(x)).
a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(3*n+k+1,n)/(3*n+k+1).
a(n) = ( (-1)^n / (3*n+1) ) * Sum_{k=0..n} (-2)^(n-k) * binomial(3*n+1,k) * binomial(4*n-k,n-k). (End)
a(n) ~ sqrt(24388 + 9221*sqrt(7)) * (316 + 119*sqrt(7))^(n - 1/2) / (sqrt(7*Pi) * n^(3/2) * 2^(n + 3/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Jul 31 2021
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n,k) * binomial(4*n-k,n-1-k) for n > 0. - Seiichi Manyama, Aug 08 2023
P-recursive: 12*n*(3*n-1)*(3*n+1)*(119*n^2-323*n+218)*a(n) = 4*(37604*n^5-158474*n^4+248391*n^3-178459*n^2+58042*n-6720)*a(n-1) - (3*n-4)*(3*n-5)*(3*n-6)*(119*n^2-85*n+14)*a(n-2) with a(0) = a(1) = 1. - Peter Bala, Sep 08 2024

Extensions

a(9)-a(21) from Lars Blomberg, Jul 12 2017
a(0)=1 inserted by Seiichi Manyama, Jul 26 2020