A243757 a(n) = Product_{i=1..n} A060904(i).
1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 25, 25, 25, 25, 25, 125, 125, 125, 125, 125, 625, 625, 625, 625, 625, 15625, 15625, 15625, 15625, 15625, 78125, 78125, 78125, 78125, 78125, 390625, 390625, 390625, 390625, 390625, 1953125, 1953125, 1953125, 1953125, 1953125, 9765625
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
Programs
-
Haskell
a243757 n = a243757_list !! n a243757_list = scanl (*) 1 a060904_list -- Reinhard Zumkeller, Feb 04 2015
-
Mathematica
Table[Product[5^IntegerExponent[k, 5], {k, 1, n}], {n, 0, 20}] (* G. C. Greubel, Dec 24 2016 *)
-
PARI
a(n) = prod(k=1,n, 5^valuation(k,5)); \\ G. C. Greubel, Dec 24 2016
-
Sage
S=[0]+[5^valuation(i, 5) for i in [1..100]] [prod(S[1:i+1]) for i in [0..99]]
Comments