cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A254609 Triangle read by rows: T(n,k) = A243757(n)/(A243757(k)*A243757(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 1, 1, 1, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1, 1, 1, 5, 5, 5, 1, 1, 5, 5, 5, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 5, 5
Offset: 0

Views

Author

Tom Edgar, Feb 02 2015

Keywords

Comments

These are the generalized binomial coefficients associated with A060904.
The exponent of T(n,k) is the number of 'carries' that occur when adding k and n-k in base 5 using the traditional addition algorithm.
If T(n,k) != 0 mod 5, then n dominates k in base 5.
A194459(n) = number of ones in row n. - Reinhard Zumkeller, Feb 04 2015

Examples

			The first five terms in A060904 are 1, 1, 1, 1, and 5 and so T(4,2) = 1*1*1*1/((1*1)*(1*1))=1 and T(5,3) = 5*1*1*1*1/((1*1*1)*(1*1))=5.
The triangle begins:
1
1, 1
1, 1, 1
1, 1, 1, 1
1, 1, 1, 1, 1
1, 5, 5, 5, 5, 1
1, 1, 5, 5, 5, 1, 1
1, 1, 1, 5, 5, 1, 1, 1
1, 1, 1, 1, 5, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 1
1, 1, 5, 5, 5, 1, 1, 5, 5, 5, 1, 1
1, 1, 1, 5, 5, 1, 1, 1, 5, 5, 1, 1, 1
1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
		

Crossrefs

Programs

  • Haskell
    import Data.List (inits)
    a254609 n k = a254609_tabl !! n !! k
    a254609_row n = a254609_tabl !! n
    a254609_tabl = zipWith (map . div)
       a243757_list $ zipWith (zipWith (*)) xss $ map reverse xss
       where xss = tail $ inits a243757_list
    -- Reinhard Zumkeller, Feb 04 2015

Formula

T(n,k) = A243757(n)/(A243757(k)*A243757(n-k)).
T(n,k) = Product_{i=1..n} A060904(i)/(Product_{i=1..k} A060904(i)*Product_{i=1..n-k} A060904(i)).
T(n,k) = A060904(n)/n*(k/A060904(k)*T(n-1,k-1)+(n-k)/A060904(n-k)*T(n-1,k)).

A136692 Final nonzero digit of n! in base 5.

Original entry on oeis.org

1, 1, 2, 1, 4, 4, 4, 3, 4, 1, 2, 2, 4, 2, 3, 4, 4, 3, 4, 1, 4, 4, 3, 4, 1, 1, 1, 2, 1, 4, 4, 4, 3, 4, 1, 2, 2, 4, 2, 3, 4, 4, 3, 4, 1, 4, 4, 3, 4, 1, 2, 2, 4, 2, 3, 3, 3, 1, 3, 2, 4, 4, 3, 4, 1, 3, 3, 1, 3, 2, 3, 3, 1, 3, 2, 1, 1, 2, 1, 4, 4, 4, 3, 4, 1, 2, 2, 4, 2, 3, 4, 4, 3, 4, 1, 4, 4, 3, 4, 1
Offset: 0

Views

Author

Carl R. White, Jan 16 2008

Keywords

Examples

			6! = 720 decimal = 10340 quinary, so a(6) = 4.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
       local t;
       t:= n / 5^padic:-ordp(n,5);
       procname(n-1)*t mod 5
    end proc:
    f(0):= 1:
    map(f, [$0..100]); # Robert Israel, Jun 27 2025
  • Mathematica
    Table[Module[{sp=Split[IntegerDigits[n!,5]]},If[sp[[-1,-1]]==0,sp[[-2, -1]], sp[[-1,-1]]]],{n,0,100}] (* Harvey P. Dale, Oct 26 2016 *)
  • PARI
    a(n)={my(v=[1, 1, 2, 1, 4, 4, 4, 3, 4, 1]); if(n==0, 1, lift(prod(k=0, logint(n,5), Mod(v[1 + n\5^k % 10], 5))))} \\ Andrew Howroyd, Sep 27 2024

Formula

a(n) = (n!/A243757(n)) mod 5. - Ridouane Oudra, Sep 27 2024

A243758 a(n) = Product_{i=1..n} A234959(i).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 6, 36, 36, 36, 36, 36, 36, 216, 216, 216, 216, 216, 216, 1296, 1296, 1296, 1296, 1296, 1296, 7776, 7776, 7776, 7776, 7776, 7776, 279936, 279936, 279936, 279936, 279936, 279936, 1679616, 1679616, 1679616, 1679616, 1679616, 1679616, 10077696
Offset: 0

Views

Author

Tom Edgar, Jun 10 2014

Keywords

Comments

This is the generalized factorial for A234959.
a(0) = 1 as it represents the empty product.

Crossrefs

Programs

  • Haskell
    a243758 n = a243758_list !! n
    a243758_list = scanl (*) 1 a234959_list
    -- Reinhard Zumkeller, Feb 09 2015
    
  • Mathematica
    Table[Product[6^IntegerExponent[k, 6], {k, 1, n}], {n, 0, 20}] (* G. C. Greubel, Dec 24 2016 *)
  • PARI
    valp(n,p)=my(s); while(n\=p, s+=n); s
    a(n)=6^valp(n,6) \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    S=[0]+[6^valuation(i,6) for i in [1..100]]
    [prod(S[1:i+1]) for i in [0..99]]
    

Formula

a(n) = Product_{i=1..n} A234959(i).
a(n) = 6^(A054895(n)).
Showing 1-3 of 3 results.