cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243881 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UDUUUDDDUD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/4)), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 1, 129, 3, 419, 10, 1395, 35, 4737, 124, 1, 16338, 454, 4, 57086, 1684, 16, 201642, 6305, 65, 718855, 23781, 263, 1, 2583149, 90209, 1077, 5, 9346594, 343809, 4419, 23, 34023934, 1315499, 18132, 105, 124519805, 5050144, 74368, 472, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2014

Keywords

Comments

UDUUUDDDUD is the only Dyck path of semilength 5 that contains all eight consecutive step patterns of length 3.

Examples

			Triangle T(n,k) begins:
:  0 :        1;
:  1 :        1;
:  2 :        2;
:  3 :        5;
:  4 :       14;
:  5 :       41,       1;
:  6 :      129,       3;
:  7 :      419,      10;
:  8 :     1395,      35;
:  9 :     4737,     124,     1;
: 10 :    16338,     454,     4;
: 11 :    57086,    1684,    16;
: 12 :   201642,    6305,    65;
: 13 :   718855,   23781,   263,   1;
: 14 :  2583149,   90209,  1077,   5;
: 15 :  9346594,  343809,  4419,  23;
: 16 : 34023934, 1315499, 18132, 105;
		

Crossrefs

Row sums give A000108.
T(738,k) = A243752(738,k).
T(n,0) = A243753(n,738).
Cf. A243882.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
         expand(b(x-1, y+1, [2, 2, 4, 5, 6, 2, 4, 2, 10, 2][t])+`if`(t=10,
          z, 1)*b(x-1, y-1, [1, 3, 1, 3, 3, 7, 8, 9, 1, 3][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..20);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y<0 || y>x, 0, If[x==0, 1, Expand[b[x-1, y+1, {2, 2, 4, 5, 6, 2, 4, 2, 10, 2}[[t]]] + If[t==10, z, 1]*b[x-1, y-1, {1, 3, 1, 3, 3, 7, 8, 9, 1, 3}[[t]]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)