A243944 a(n) = A084768(n)^2.
1, 49, 5329, 717409, 106523041, 16735820689, 2727812288881, 456250924320961, 77788137919752001, 13459803510972477169, 2356471368269511061009, 416518496068852312607521, 74207592486779379593752801, 13309569813247406938272432721, 2400816685486139045360488325809
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 49*x + 5329*x^2 + 717409*x^3 + 106523041*x^4 +...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..438
Crossrefs
Programs
-
Magma
[Evaluate(LegendrePolynomial(n),7)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
-
Mathematica
Table[Sum[12^k * Binomial[2*k, k]^2 * Binomial[n+k, n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 28 2019 *) CoefficientList[Series[2*EllipticK[1 - (1-x)^2/(1 - 194*x + x^2)] / (Pi*Sqrt[1 - 194*x + x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 28 2019 *) LegendreP[Range[0, 40], 7]^2 (* G. C. Greubel, May 17 2023 *)
-
PARI
{a(n) = sum(k=0, n, 12^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )} for(n=0, 20, print1(a(n), ", "))
-
PARI
{a(n) = sum(k=0, n, 3^k * binomial(2*k, k) * binomial(n+k, n-k) )^2} for(n=0, 20, print1(a(n), ", "))
-
PARI
/* Using AGM: */ {a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 14^2*x +x*O(x^n))), n)} for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
-
SageMath
[gen_legendre_P(n,0,7)^2 for n in range(41)] # G. C. Greubel, May 17 2023
Formula
G.f.: 1 / AGM(1-x, sqrt(1-194*x+x^2)). - Paul D. Hanna, Aug 30 2014
a(n) = Sum_{k=0..n} 12^k * C(2*k, k)^2 * C(n+k, n-k).
a(n)^(1/2) = Sum_{k=0..n} 3^k * C(2*k, k) * C(n+k, n-k).
a(n) ~ (1+sqrt(3))^(8*n+4) / (sqrt(3) * Pi * n * 2^(4*n+5)). - Vaclav Kotesovec, Sep 28 2019
a(n) = (LegendreP(n, 7))^2. - G. C. Greubel, May 17 2023
Comments