A243998 Number T(n,k) of Dyck paths of semilength n with exactly k (possibly overlapping) occurrences of some of the consecutive patterns of Dyck paths of semilength 3; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.
1, 1, 2, 0, 5, 1, 11, 2, 1, 33, 7, 1, 4, 90, 30, 7, 1, 11, 245, 142, 24, 6, 1, 29, 680, 570, 121, 24, 5, 1, 81, 1884, 2176, 578, 112, 25, 5, 1, 220, 5265, 7935, 2649, 580, 116, 25, 5, 1, 608, 14747, 28022, 11827, 2825, 602, 124, 25, 5, 1
Offset: 0
Examples
T(3,1) = 5: 101010, 101100, 110010, 110100, 111000. T(4,0) = 1: 11001100. T(4,2) = 2: 10101010, 10110010. T(5,0) = 1: 1110011000. T(6,3) = 7: 101010101100, 101010110010, 101100101010, 101100101100, 110010101010, 110010110010, 110101010100. Triangle T(n,k) begins: : 0 : 1; : 1 : 1; : 2 : 2; : 3 : 0, 5; : 4 : 1, 11, 2; : 5 : 1, 33, 7, 1; : 6 : 4, 90, 30, 7, 1; : 7 : 11, 245, 142, 24, 6, 1; : 8 : 29, 680, 570, 121, 24, 5, 1; : 9 : 81, 1884, 2176, 578, 112, 25, 5, 1; : 10 : 220, 5265, 7935, 2649, 580, 116, 25, 5, 1;
Links
- Alois P. Heinz, Rows n = 0..142, flattened
Programs
-
Maple
b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1, expand(add(b(x-1, y-1+2*j, irem(2*t+j, 32))* `if`(2*t+j in {42, 44, 50, 52, 56}, z, 1), j=0..1)))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 0)): seq(T(n), n=0..14);
-
Mathematica
b[x_, y_, t_] := b[x, y, t] = If[y < 0 || y > x, 0, If[x == 0, 1, Expand[Sum[b[x-1, y-1 + 2j, Mod[2t+j, 32]]* Switch[2t+j, 42|44|50|52|56, z, _, 1], {j, 0, 1}]]]]; T[n_] := CoefficientList[b[2n, 0, 0], z]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Apr 30 2022, after Alois P. Heinz *)
Comments