A244013
Denominators of rational approximations to sqrt(7) obtained from Newton's method.
Original entry on oeis.org
1, 4, 88, 41008, 8898489952, 418997705236253480128, 928971316248341903257187589777603944778112, 4566501711345281867283814391125123371716411674583075407993026856131137508750543524608
Offset: 0
2, 11/4, 233/88, 108497/41008, 23543191457/8898489952, ...
-
N:=7;
s:=[floor(sqrt(N))];
M:=8;
for n from 1 to M do
x:=s[n];
h:=(N-x^2)/(2*x);
s:=[op(s),x+h]; od:
lprint(s);
s1:=map(numer,s);
s2:=map(denom,s);
A244014
Numerators of rational approximations to sqrt(6) obtained from Newton's method.
Original entry on oeis.org
2, 5, 49, 4801, 46099201, 4250272665676801, 36129635465198759610694779187201, 2610701117696295981568349760414651575095962187244375364404428801
Offset: 0
2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
-
N:=6;
s:=[floor(sqrt(N))];
M:=8;
for n from 1 to M do
x:=s[n];
h:=(N-x^2)/(2*x);
s:=[op(s),x+h]; od:
lprint(s);
s1:=map(numer,s);
s2:=map(denom,s);
A244015
Denominators of rational approximations to sqrt(6) obtained from Newton's method.
Original entry on oeis.org
1, 2, 20, 1960, 18819920, 1735166549767840, 14749861913749949808286047759680, 1065814268211609269094400465471990022332221793124358274759711360
Offset: 0
2, 5/2, 49/20, 4801/1960, 46099201/18819920, ...
-
m:=9; f:=[n eq 1 select 2 else (Self(n-1)+6/Self(n-1))/2: n in [1..m]]; [Denominator(f[n]): n in [1..m]]; // Vincenzo Librandi, Jan 12 2016
-
N:=6;
s:=[floor(sqrt(N))];
M:=8;
for n from 1 to M do
x:=s[n];
h:=(N-x^2)/(2*x);
s:=[op(s),x+h]; od:
lprint(s);
s1:=map(numer,s);
s2:=map(denom,s);
Showing 1-3 of 3 results.