A244082 a(n) = 32*n^2.
0, 32, 128, 288, 512, 800, 1152, 1568, 2048, 2592, 3200, 3872, 4608, 5408, 6272, 7200, 8192, 9248, 10368, 11552, 12800, 14112, 15488, 16928, 18432, 20000, 21632, 23328, 25088, 26912, 28800, 30752, 32768, 34848, 36992, 39200, 41472, 43808, 46208, 48672, 51200
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[32*n^2 : n in [0..50]];
-
Maple
A244082:=n->32*n^2; seq(A244082(n), n=0..50);
-
Mathematica
32 Range[0, 50]^2 (* or *) Table[32 n^2, {n, 0, 50}] (* or *) CoefficientList[Series[32 x (1 + x)/(1 - x)^3, {x, 0, 30}], x]
-
PARI
a(n)=32*n^2 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: 32*x*(1+x)/(1-x)^3.
a(n) = 2 * A016802(n).
a(n) = 4 * A139098(n).
a(n) = 8 * A016742(n).
a(n) = 16 * A001105(n).
a(n) = 32 * A000290(n).
a(n) = A010021(n) - 2 for n > 0. - Bruno Berselli, Jun 24 2014
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Nov 19 2021
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 32*x*(1 + x)*exp(x).
Comments