cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244174 Number of compositions of 3n in which the minimal multiplicity of parts equals n.

Original entry on oeis.org

1, 3, 7, 21, 71, 253, 925, 3433, 12871, 48621, 184757, 705433, 2704157, 10400601, 40116601, 155117521, 601080391, 2333606221, 9075135301, 35345263801, 137846528821, 538257874441, 2104098963721, 8233430727601, 32247603683101, 126410606437753, 495918532948105
Offset: 0

Views

Author

Alois P. Heinz, Jun 21 2014

Keywords

Examples

			a(2) = 7: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1], [3,3].
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n<3, 2^(n+1)-1, ((15*n^2-31*n+12) *a(n-1)
           -2*(3*n-2)*(2*n-3) *a(n-2)) / ((3*n-5)*n))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := a[n] = If[n < 3, 2^(n+1) - 1, ((15*n^2 - 31*n + 12)*a[n-1] - 2*(3*n - 2)*(2*n - 3)*a[n-2])/((3*n - 5)*n)]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2014, after Alois P. Heinz *)
  • Sage
    A244174 = lambda m: SetPartitions(2*m,[2*m]).cardinality()+2*SetPartitions(2*m,[m,m]).cardinality()
    [1] + [A244174(m) for m in (1..26)] # Peter Luschny, Aug 02 2015

Formula

a(n) = A242451(3n,n).
Recurrence: see Maple program.
For n>0, a(n) = 1 + C(2n,n) = 1 + A000984(n). - Vaclav Kotesovec, Jun 21 2014
G.f.: 1/(sqrt(1-4*x)) + x/(1-x). - Alois P. Heinz, Jun 22 2014
a(n) = A245732(2n,n). - Alois P. Heinz, Jul 30 2014
a(n) = A065567(2n,n) for n>=1. - Alois P. Heinz, Sep 05 2023