A244174 Number of compositions of 3n in which the minimal multiplicity of parts equals n.
1, 3, 7, 21, 71, 253, 925, 3433, 12871, 48621, 184757, 705433, 2704157, 10400601, 40116601, 155117521, 601080391, 2333606221, 9075135301, 35345263801, 137846528821, 538257874441, 2104098963721, 8233430727601, 32247603683101, 126410606437753, 495918532948105
Offset: 0
Keywords
Examples
a(2) = 7: [1,1,2,2], [1,2,1,2], [1,2,2,1], [2,1,1,2], [2,1,2,1], [2,2,1,1], [3,3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; `if`(n<3, 2^(n+1)-1, ((15*n^2-31*n+12) *a(n-1) -2*(3*n-2)*(2*n-3) *a(n-2)) / ((3*n-5)*n)) end: seq(a(n), n=0..30);
-
Mathematica
a[n_] := a[n] = If[n < 3, 2^(n+1) - 1, ((15*n^2 - 31*n + 12)*a[n-1] - 2*(3*n - 2)*(2*n - 3)*a[n-2])/((3*n - 5)*n)]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2014, after Alois P. Heinz *)
-
Sage
A244174 = lambda m: SetPartitions(2*m,[2*m]).cardinality()+2*SetPartitions(2*m,[m,m]).cardinality() [1] + [A244174(m) for m in (1..26)] # Peter Luschny, Aug 02 2015
Formula
a(n) = A242451(3n,n).
Recurrence: see Maple program.
For n>0, a(n) = 1 + C(2n,n) = 1 + A000984(n). - Vaclav Kotesovec, Jun 21 2014
G.f.: 1/(sqrt(1-4*x)) + x/(1-x). - Alois P. Heinz, Jun 22 2014
a(n) = A245732(2n,n). - Alois P. Heinz, Jul 30 2014
a(n) = A065567(2n,n) for n>=1. - Alois P. Heinz, Sep 05 2023