A245732 Number T(n,k) of endofunctions on [n] such that at least one preimage with cardinality >=k exists and a nonempty preimage of j implies that all i<=j have preimages with cardinality >=k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 4, 3, 1, 27, 13, 1, 1, 256, 75, 7, 1, 1, 3125, 541, 21, 1, 1, 1, 46656, 4683, 141, 21, 1, 1, 1, 823543, 47293, 743, 71, 1, 1, 1, 1, 16777216, 545835, 5699, 183, 71, 1, 1, 1, 1, 387420489, 7087261, 42241, 2101, 253, 1, 1, 1, 1, 1
Offset: 0
Examples
Triangle T(n,k) begins: 0 : 1; 1 : 1, 1; 2 : 4, 3, 1; 3 : 27, 13, 1, 1; 4 : 256, 75, 7, 1, 1; 5 : 3125, 541, 21, 1, 1, 1; 6 : 46656, 4683, 141, 21, 1, 1, 1; 7 : 823543, 47293, 743, 71, 1, 1, 1, 1; 8 : 16777216, 545835, 5699, 183, 71, 1, 1, 1, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, add(b(n-j, k)*binomial(n, j), j=k..n)) end: T:= (n, k)-> `if`(k=0, n^n, `if`(n=0, 0, b(n, k))): seq(seq(T(n, k), k=0..n), n=0..12);
-
Mathematica
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n-j, k]*Binomial[n, j], {j, k, n}]]; T[n_, k_] := If[k == 0, n^n, If[n == 0, 0, b[n, k]]]; T[0, 0] = 1; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 05 2015, after Alois P. Heinz *)
Formula
E.g.f. (for column k > 0): 1/(2 -exp(x) +Sum_{j=1..k-1} x^j/j!) -1. - Vaclav Kotesovec, Aug 02 2014
Comments