cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244194 Numbers n such that the difference between the greatest prime divisor of n^2 + 1 and the sum of the other distinct prime divisors is equal to +-1.

Original entry on oeis.org

268, 411, 606, 657, 1269, 3411, 6981, 8844, 9133, 10509, 28862, 46818, 75163, 81668, 88733, 89238, 107047, 111968, 125793, 143382, 150522, 155317, 179343, 185363, 214547, 222173, 241710, 269051, 305333, 367830, 397387, 492258, 634251, 719379, 724315, 763267
Offset: 1

Views

Author

Michel Lagneau, Jun 22 2014

Keywords

Examples

			268 is in the sequence because 268^2 + 1 = 5^2*13^2*17 and 17 - (13 + 5) = 17 - 18 = -1;
411 is in the sequence because 411^2 + 1 = 2 * 13 * 73 * 8 and 89 - (2 + 13 + 73) = 89 - 88 = 1.
		

Crossrefs

Cf. A002522.

Programs

  • Magma
    sol:=[]; m:=1; for n in [6..770000] do fp:=PrimeDivisors(n^2+1); big:=Max(fp);  if  #fp ge 2 and Abs(2*big-&+fp) eq 1 then sol[m]:=n; m:=m+1; end if; end for; sol; // Marius A. Burtea, Aug 27 2019
  • Mathematica
    fpdQ[n_]:=Module[{f=Transpose[FactorInteger[n^2+1]][[1]]},Max[f]-Total[Most[f]]==1];gpdQ[n_]:=Module[{g=Transpose[FactorInteger[n^2+1]][[1]]},Max[g]-Total[Most[g]]==-1];Union[Select[Range[2,10^6],fpdQ ],Select[Range[2,10^6],gpdQ ]]
    d1Q[n_]:=Module[{c=TakeDrop[FactorInteger[n^2+1][[All,1]],-1]},Abs[ c[[1]] - Total[c[[2]]]]=={1}]; Select[Range[800000],d1Q] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 06 2018 *)