A244267 a(n) = the frequency of the most common 2-digit ending of a prime < 10^n.
1, 6, 35, 250, 1986, 16716, 144183, 1271765, 11378311, 102956670, 940224567, 8651691637, 80123673992
Offset: 2
Examples
Of the primes up to and including the last of the 3-digit primes, the most common 2-digit ending occurs 6 times. Thus a(3) = 6.
Crossrefs
Cf. A244192.
Programs
-
Python
import sympy from sympy import isprime def prend1(d,n): lst = [ ] for k in range(10**n): if isprime(k): lst.append((k%10**d)) new = 0 newlst = [ ] for i in range(10**(d-1),10**d): new = lst.count(i) newlst.append(new) return max(newlst) n = 3 while n < 10: print(prend1(2,n),end=', ') n += 1
Extensions
a(9)-a(12) from Hiroaki Yamanouchi, Aug 26 2014
Example corrected by Harvey P. Dale, Sep 27 2018
a(13)-a(14) from Giovanni Resta, Oct 23 2018