cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244309 a(n) = F(n)^3 - F(n)^2, where F(n) is the n-th Fibonacci number (A000045).

Original entry on oeis.org

0, 0, 0, 4, 18, 100, 448, 2028, 8820, 38148, 163350, 697048, 2965248, 12595048, 53440504, 226608900, 960530634, 4070452764, 17246835648, 73069580980, 309555981900, 1311374255620, 5555264316910, 23532984885744, 99688652356608, 422291386890000
Offset: 0

Views

Author

Colin Barker, Jun 25 2014

Keywords

Examples

			a(4) is 18 because F(4)^3 - F(4)^2 = 3^3 - 3^2 = 18.
		

Crossrefs

Programs

  • Magma
    [Fibonacci(n)^3 - Fibonacci(n)^2: n in [0..30]]; // Vincenzo Librandi, Jun 26 2014
  • Mathematica
    CoefficientList[Series[2 x^3 (x^2 - x + 2)/((x + 1) (x^2 - 3 x + 1) (x^2 - x - 1) (x^2 + 4 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 26 2014 *)
    Table[#^3 - #^2 &@ Fibonacci@ n, {n, 0, 25}] (* Michael De Vlieger, Mar 27 2016 *)
    LinearRecurrence[{5,2,-22,-4,14,-1,-1},{0,0,0,4,18,100,448},30] (* Harvey P. Dale, Aug 22 2020 *)
  • PARI
    vector(50, n, fibonacci(n-1)^3-fibonacci(n-1)^2)
    

Formula

G.f.: 2*x^3*(x^2-x+2) / ((x+1)*(x^2-3*x+1)*(x^2-x-1)*(x^2+4*x-1)).
a(n) = A045991(A000045(n)). - Michel Marcus, Jun 25 2014
a(n) = (F(3*n) - 3*(-1)^n*F(n))/5 - (L(2*n) - 2*(-1)^n)/5, where F=A000045 and L=A000032. - Ehren Metcalfe, Mar 26 2016