cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244310 a(n) = L(n)^3 - L(n)^2, where L(n) is the n-th Lucas number (A000032).

Original entry on oeis.org

4, 0, 18, 48, 294, 1210, 5508, 23548, 101614, 433200, 1845738, 7840998, 33282564, 141149320, 598366458, 2535856048, 10745092894, 45524786370, 192866785668, 817050731748, 3461224027254, 14662350247600, 62111682111618, 263111844646798, 1114566304573444
Offset: 0

Views

Author

Colin Barker, Jun 25 2014

Keywords

Examples

			a(3) is 48 because L(3)^3 - L(3)^2 = 4^3 - 4^2 = 48.
		

Crossrefs

Programs

  • Magma
    [Lucas(n)^3 - Lucas(n)^2: n in [0..30]]; // Vincenzo Librandi, Jun 26 2014
  • Mathematica
    CoefficientList[Series[2 (x^6 - 8 x^5 + 17 x^4 + 23 x^3 + 5 x^2 - 10 x + 2)/((x + 1) (x^2 - 3 x + 1) (x^2 - x - 1) (x^2 + 4 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 26 2014 *)
    Table[LucasL[n]^3 - LucasL[n]^2, {n,0,50}] (* G. C. Greubel, Oct 13 2018 *)
  • PARI
    lucas(n) = if(n==0, 2, 2*fibonacci(n-1)+fibonacci(n))
    vector(50, n, lucas(n-1)^3-lucas(n-1)^2)
    

Formula

G.f.: 2*(x^6-8*x^5+17*x^4+23*x^3+5*x^2-10*x+2) / ((x+1)*(x^2-3*x+1)*(x^2-x-1)*(x^2+4*x-1)).
a(n) = A045991(A000032(n)). - Michel Marcus, Jun 25 2014