A244358 Numbers k such that k, k+1, k+2, and k+3 are not divisible by any of their nonzero digits.
56, 506, 556, 586, 596, 656, 667, 757, 787, 857, 866, 867, 956, 976, 977, 5056, 5066, 5096, 5506, 5666, 5756, 5776, 5876, 5906, 5986, 5996, 6056, 6067, 6506, 6697, 6986, 7057, 7556, 7576, 7597, 7757, 7786, 7787, 7876, 7897, 7906, 7976, 7996, 8066, 8067, 8506, 8596, 8666, 8697
Offset: 1
Examples
56, 57, 58, and 59 are not divisible by any of their digits. Thus, 56 is a member of this sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
SequencePosition[Table[If[NoneTrue[n/(IntegerDigits[n]/.(0->Nothing)),IntegerQ],1,0],{n,9000}],{1,1,1,1}][[;;,1]] (* Harvey P. Dale, Jun 06 2025 *)
-
Python
def a(n): for i in range(10**4): tot = 0 for k in range(i,i+n): c = 0 for b in str(k): if b != '0': if k%int(b)!=0: c += 1 if c == len(str(k))-str(k).count('0'): tot += 1 if tot == n: print(i,end=', ') a(4)
Comments