A244365 Table read by rows: row n contains all primes p such that prime(n) < p <= floor(prime(n)^(1+1/n)).
3, 5, 7, 11, 13, 17, 17, 19, 19, 23, 23, 29, 31, 31, 37, 37, 41, 41, 43, 47, 43, 47, 53, 47, 53, 53, 59, 59, 61, 67, 61, 67, 71, 73, 67, 71, 73, 71, 73, 79, 83, 73, 79, 83, 79, 83, 89, 83, 89, 89, 97, 97, 101, 103, 107, 101, 103, 107, 109, 113, 103, 107, 109
Offset: 1
Examples
. n | A182134(n) | A249669(n) | T(n,1) ... T(n,A182134(n)) . ----+------------+------------+---------------------------- . 1 | 1 | 4 | [3] . 2 | 1 | 5 | [5] . 3 | 1 | 8 | [7] . 4 | 1 | 11 | [11] . 5 | 2 | 17 | [13, 17] . 6 | 2 | 19 | [17, 19] . 7 | 2 | 25 | [19, 23] . 8 | 1 | 27 | [23] . 9 | 2 | 32 | [29, 31] . 10 | 2 | 40 | [31, 37] . 11 | 2 | 42 | [37, 41] . 12 | 3 | 49 | [41, 43, 47] . 13 | 3 | 54 | [43, 47, 53] . 14 | 2 | 56 | [47, 53] . 15 | 2 | 60 | [53, 59] . 16 | 3 | 67 | [59, 61, 67] . 17 | 4 | 74 | [61, 67, 71, 73] . 18 | 3 | 76 | [67, 71, 73] . 19 | 4 | 83 | [71, 73, 79, 83] . 20 | 3 | 87 | [73, 79, 83] . 21 | 3 | 89 | [79, 83, 89] . 22 | 2 | 96 | [83, 89] . 23 | 2 | 100 | [89, 97] . 24 | 4 | 107 | [97, 101, 103, 107] . 25 | 5 | 116 | [101, 103, 107, 109, 113] .
Links
- Reinhard Zumkeller, Rows n = 1..1000 of triangle, flattened
Programs
-
Haskell
a244365 n k = a244365_tabf !! (n-1) !! (k-1) a244365_row n = a244365_tabf !! (n-1) a244365_tabf = zipWith farideh (map (+ 1) a000040_list) a249669_list where farideh u v = filter ((== 1) . a010051') [u..v]
-
PARI
row(n) = my(list=List(), p=prime(n)); forprime(q=nextprime(p+1), p^(1+1/n), listput(list, q)); Vec(list); \\ Michel Marcus, Jan 24 2022
Comments