cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244376 Numbers k such that 1 + k + k^3 + k^5 + k^7 + k^9 + k^11 is prime.

Original entry on oeis.org

1, 2, 10, 40, 47, 55, 62, 121, 137, 152, 167, 201, 233, 278, 290, 293, 313, 333, 370, 382, 430, 452, 460, 506, 546, 555, 613, 625, 642, 675, 705, 711, 752, 767, 793, 797, 831, 835, 837, 872, 878, 891, 906, 917, 923, 978, 985, 1005, 1012, 1017, 1018, 1021
Offset: 1

Views

Author

Vincenzo Librandi, Jun 27 2014

Keywords

Crossrefs

Cf. A127936.
Cf. numbers n such that 1+n+n^3 + ... + n^k, with k odd: A006093 (k=1), A049407 (k=3), A124154 (k=5), A124150 (k=7), A124163 (k=9), this sequence (k=11), A124164 (k=13), A244377 (k=15), A244378 (k=17), A124178 (k=19), A244379 (k=21), A124181 (k=23), A244380 (k=25), A124185 (k=27), A244383 (k=29), A124186 (k=31), A244384 (k=33), A124187 (k=35), A244385 (k=37), A124189 (k=39), A244386 (k=41), A124200 (k=43), A244387 (k=45), A124205 (k=47), A244388 (k=49), A124206 (k=51), A244389 (k=53), A124207 (k=55), A244390 (k=57), A124208 (k=59), A244391 (k=61), A124209 (k=63).

Programs

  • Magma
    [n: n in [0..1500] | IsPrime(s) where s is 1+&+[n^i: i in [1..11 by 2]]];
    
  • Mathematica
    Select[Range[4000], PrimeQ[Total[#^Range[1, 11, 2]] + 1] &]
  • PARI
    isok(n) = isprime(1 + n + n^3 + n^5 + n^7 + n^9 + n^11); \\ Michel Marcus, Jun 27 2014
    
  • Sage
    i,n = var('i,n')
    [n for n in (1..2000) if is_prime(1+(n^(2*i+1)).sum(i,0,5))] # Bruno Berselli, Jun 27 2014