A244411 Nonprimes n such that the product of its divisors is a palindrome.
1, 4, 22, 26, 49, 111, 121, 202, 1001, 1111, 2285, 10001, 10201, 11111, 100001, 1000001, 1001001, 1012101, 1100011, 1101011, 1109111, 1111111, 3069307, 10000001, 12028229, 12866669, 100000001, 101000101, 110000011, 110091011, 200010002, 10000000001, 10011111001
Offset: 1
Examples
The divisors of 26 are 1,2,13,26. And 1*2*13*26 = 676 is a palindrome. Thus 26 is a member of this sequence.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..47 (terms < 3.5*10^11)
Programs
-
PARI
rev(n)={r="";for(i=1,#digits(n),r=concat(Str(digits(n)[i]),r));return(eval(r))} for(n=1,2*10^8,if(!isprime(n),d=divisors(n);ss=prod(j=1,#d,d[j]);if(ss==rev(ss),print1(n,", "))))
-
Python
import sympy from sympy import isprime from sympy import divisors def rev(n): r = "" for i in str(n): r = i + r return int(r) def a(): for n in range(1,10**8): if not isprime(n): p = 1 for i in divisors(n): p*=i if rev(p)==p: print(n,end=', ') a()
-
Python
from sympy import divisor_count, sqrt A244411_list = [1] for n in range(1,10**5): d = divisor_count(n) if d > 2: q, r = divmod(d,2) s = str(n**q*(sqrt(n) if r else 1)) if s == s[::-1]: A244411_list.append(n) # Chai Wah Wu, Aug 25 2015
Extensions
a(31) from Chai Wah Wu, Aug 25 2015
a(32)-a(33) from Giovanni Resta, Sep 20 2019
Comments