A244423 Nonprime palindromes n such that the product of divisors of n is also a palindrome.
1, 4, 22, 111, 121, 202, 1001, 1111, 10001, 10201, 11111, 100001, 1000001, 1001001, 1012101, 1100011, 1101011, 1111111, 10000001, 100000001, 101000101, 110000011, 200010002, 10000000001, 10011111001, 11000100011, 11001010011, 11100100111, 11101010111, 20000100002
Offset: 1
Examples
The divisors of 22 are 1, 2, 11 and 22. 1*2*11*22 = 484 is a palindrome. Since 22 is also a palindrome, 22 is a member of this sequence.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..49
- Eric Weisstein's World of Mathematics, Palindromic Number
- Index entries for sequences related to palindromes
Programs
-
Mathematica
palQ[n_] := Block[{d = IntegerDigits@ n}, Reverse@ d == d]; lim = 15000000; Select[Complement[Range@ lim, Prime@ Range@ PrimePi@ lim], And[palQ@ #, palQ[Times @@ Divisors@ #]] &] (* Michael De Vlieger, Aug 25 2015 *) Select[Range[200002*10^5],!PrimeQ[#]&&AllTrue[{#,Times@@Divisors[#]},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 28 2020 *)
-
PARI
rev(n)={r="";dig=digits(n);for(i=1,#dig,r=concat(Str(dig[i]),r));return(eval(r))} for(n=1,10^8,if(rev(n)==n&&(!isprime(n)), d=divisors(n);ss=prod(j=1,#d,d[j]);if(ss==rev(ss),print1(n,", "))))
-
PARI
/* david(n) returns the n-th palindrome from David A. Corneth, Jun 06 2014 */ david(n)={my(d, i, r); r=vector(#digits(n-10^(#digits(n\11)))+#digits(n\11)); n=n-10^(#digits(n\11)); d=digits(n); for(i=1, #d, r[i]=d[i]; r[#r+1-i]=d[i]); sum(i=1, #r, 10^(#r-i)*r[i])} rev(n)={r="";dig=digits(n);for(i=1,#dig,r=concat(Str(dig[i]),r));return(eval(r))} for(n=2,10^6,pal=david(n);if(!isprime(pal),d=divisors(pal);ss=prod(j=1,#d,d[j]);if(ss==rev(ss),print1(pal,", "))))
-
Python
import sympy from sympy import isprime from sympy import divisors def rev(n): r = "" for i in str(n): r = i + r return int(r) def a(): for n in range(1,10**8): if rev(n) == n and not isprime(n): p = 1 for i in divisors(n): p*=i if rev(p)==p: print(n,end=', ') a()
-
Python
from sympy import divisor_count, sqrt def palgen(l,b=10): # generator of palindromes in base b of length <= 2*l if l > 0: yield 0 for x in range(1,l+1): n = b**(x-1) n2 = n*b for y in range(n,n2): k, m = y//b, 0 while k >= b: k, r = divmod(k,b) m = b*m + r yield y*n + b*m + k for y in range(n,n2): k, m = y, 0 while k >= b: k, r = divmod(k,b) m = b*m + r yield y*n2 + b*m + k A244423_list = [1] for n in palgen(6): d = divisor_count(n) if d > 2: q, r = divmod(d,2) s = str(n**q*(sqrt(n) if r else 1)) if s == s[::-1]: A244423_list.append(n) # Chai Wah Wu, Aug 25 2015
Extensions
Edited name by Chai Wah Wu, Aug 25 2015
Comments