cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244423 Nonprime palindromes n such that the product of divisors of n is also a palindrome.

Original entry on oeis.org

1, 4, 22, 111, 121, 202, 1001, 1111, 10001, 10201, 11111, 100001, 1000001, 1001001, 1012101, 1100011, 1101011, 1111111, 10000001, 100000001, 101000101, 110000011, 200010002, 10000000001, 10011111001, 11000100011, 11001010011, 11100100111, 11101010111, 20000100002
Offset: 1

Views

Author

Derek Orr, Jun 27 2014

Keywords

Comments

Primes trivially satisfy this property and are therefore not included in the sequence.
These are the palindromes in A244411.

Examples

			The divisors of 22 are 1, 2, 11 and 22. 1*2*11*22 = 484 is a palindrome. Since 22 is also a palindrome, 22 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits@ n}, Reverse@ d == d]; lim = 15000000; Select[Complement[Range@ lim, Prime@ Range@ PrimePi@ lim], And[palQ@ #, palQ[Times @@ Divisors@ #]] &] (* Michael De Vlieger, Aug 25 2015 *)
    Select[Range[200002*10^5],!PrimeQ[#]&&AllTrue[{#,Times@@Divisors[#]},PalindromeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 28 2020 *)
  • PARI
    rev(n)={r="";dig=digits(n);for(i=1,#dig,r=concat(Str(dig[i]),r));return(eval(r))}
    for(n=1,10^8,if(rev(n)==n&&(!isprime(n)), d=divisors(n);ss=prod(j=1,#d,d[j]);if(ss==rev(ss),print1(n,", "))))
    
  • PARI
    /* david(n) returns the n-th palindrome from David A. Corneth, Jun 06 2014 */
    david(n)={my(d, i, r); r=vector(#digits(n-10^(#digits(n\11)))+#digits(n\11)); n=n-10^(#digits(n\11)); d=digits(n); for(i=1, #d, r[i]=d[i]; r[#r+1-i]=d[i]); sum(i=1, #r, 10^(#r-i)*r[i])}
    rev(n)={r="";dig=digits(n);for(i=1,#dig,r=concat(Str(dig[i]),r));return(eval(r))}
    for(n=2,10^6,pal=david(n);if(!isprime(pal),d=divisors(pal);ss=prod(j=1,#d,d[j]);if(ss==rev(ss),print1(pal,", "))))
    
  • Python
    import sympy
    from sympy import isprime
    from sympy import divisors
    def rev(n):
      r = ""
      for i in str(n):
        r = i + r
      return int(r)
    def a():
      for n in range(1,10**8):
        if rev(n) == n and not isprime(n):
          p = 1
          for i in divisors(n):
            p*=i
          if rev(p)==p:
            print(n,end=', ')
    a()
    
  • Python
    from sympy import divisor_count, sqrt
    def palgen(l,b=10): # generator of palindromes in base b of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1,l+1):
                n = b**(x-1)
                n2 = n*b
                for y in range(n,n2):
                    k, m = y//b, 0
                    while k >= b:
                        k, r = divmod(k,b)
                        m = b*m + r
                    yield y*n + b*m + k
                for y in range(n,n2):
                    k, m = y, 0
                    while k >= b:
                        k, r = divmod(k,b)
                        m = b*m + r
                    yield y*n2 + b*m + k
    A244423_list = [1]
    for n in palgen(6):
        d = divisor_count(n)
        if d > 2:
            q, r = divmod(d,2)
            s = str(n**q*(sqrt(n) if r else 1))
            if s == s[::-1]:
                A244423_list.append(n) # Chai Wah Wu, Aug 25 2015

Extensions

Edited name by Chai Wah Wu, Aug 25 2015