A274760
The multinomial transform of A001818(n) = ((2*n-1)!!)^2.
Original entry on oeis.org
1, 1, 10, 478, 68248, 21809656, 13107532816, 13244650672240, 20818058883902848, 48069880140604832128, 156044927762422185270016, 687740710497308621254625536, 4000181720339888446834235653120, 29991260979682976913756629498334208
Offset: 0
Some a(n) formulas, see A036039:
a(0) = 1
a(1) = 1*x(1)
a(2) = 1*x(2) + 1*x(1)^2
a(3) = 2*x(3) + 3*x(1)*x(2) + 1*x(1)^3
a(4) = 6*x(4) + 8*x(1)*x(3) + 3*x(2)^2 + 6*x(1)^2*x(2) + 1*x(1)^4
a(5) = 24*x(5) + 30*x(1)*x(4) + 20*x(2)*x(3) + 20*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 10*x(1)^3*x(2) + 1*x(1)^5
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.
- M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers, arXiv:math/0205301 [math.CO], 2002; Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms.
- Eric W. Weisstein MathWorld, Exponential Transform.
-
nmax:= 13: b := proc(n): (doublefactorial(2*n-1))^2 end: a:= proc(n) option remember: if n=0 then 1 else add(((n-1)!/(n-k)!) * b(k) * a(n-k), k=1..n) fi: end: seq(a(n), n = 0..nmax); # End first MNL program.
nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := exp(add(b(n)*x^n/n, n = 1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n = 0..nmax); # End second MNL program.
nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(log(1+add(s(n)*x^n/n!, n=1..nmax)), x, nmax+1): d := proc(n): n*coeff(f, x, n) end: a(0) := 1: a(1) := b(1): s(1) := b(1): for n from 2 to nmax do s(n) := solve(d(n)-b(n), s(n)): a(n):=s(n): od: seq(a(n), n=0..nmax); # End third MNL program.
-
b[n_] := (2*n - 1)!!^2;
a[0] = 1; a[n_] := a[n] = Sum[((n-1)!/(n-k)!)*b[k]*a[n-k], {k, 1, n}];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 17 2017 *)
A244432
E.g.f.: exp( Sum_{n>=1} Pell(n)*x^n/n ), where Pell(n) = A000129(n).
Original entry on oeis.org
1, 1, 3, 17, 137, 1437, 18547, 284221, 5042289, 101635289, 2294115299, 57323597289, 1570795420537, 46836600355573, 1509632295204243, 52303597825637333, 1938434314587648353, 76521195859545355569, 3205495988651927796931, 142018837513142207290561
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2 + 17*x^3/3! + 137*x^4/4! + 1437*x^5/5! + ...
where
log(A(x)) = x + 2*x^2/2 + 5*x^3/3 + 12*x^4/4 + 29*x^5/5 + 70*x^6/6 + 169*x^7/7 + 408*x^8/8 + 985*x^9/9 + ... + A000129(n)*x^n/n + ...
-
{a(n)=n!*polcoeff(exp(intformal(1/(1-2*x-x^2 +x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
A244451
E.g.f.: exp( Sum_{n>=1} Fibonacci(2*n)*x^n/n ).
Original entry on oeis.org
1, 1, 4, 26, 236, 2756, 39376, 665464, 12986416, 287394416, 7112021696, 194607175136, 5834321568064, 190181750900416, 6697115871398656, 253362903806266496, 10248299242094541056, 441359565949128552704, 20163160035504969573376, 973917774772339989408256
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 26*x^3/3! + 236*x^4/4! + 2756*x^5/5! +...
where
log(A(x)) = x + 3*x^2/2 + 8*x^3/3 + 21*x^4/4 + 55*x^5/5 + 144*x^6/6 + 377*x^7/7 + 987*x^8/8 +...+ A000045(2*n)*x^n/n +...
-
{a(n)=n!*polcoeff(exp(intformal(1/(1-3*x+x^2 +x*O(x^n)))), n)}
for(n=0, 30, print1(a(n), ", "))
A291287
a(0)=a(1)=1, a(2)=3, thereafter a(n) = n*a(n-1)+(n-1)*(n-2)*a(n-2).
Original entry on oeis.org
1, 1, 3, 11, 62, 442, 3892, 40504, 487496, 6655688, 101656592, 1717234432, 31789038304, 639932442976, 13918144177088, 325239867277952, 8126648153635712, 216210586758515584, 6102238859442194176, 182102977877507458048, 5729025247479379569152
Offset: 0
- Harvey P. Dale, Table of n, a(n) for n = 0..417
- Tomislav Doslic and R. Sharafdini, Hosoya Index of Splices, Bridges, and Necklaces, in Distance, Symmetry, and Topology in Carbon Nanomaterials, 2016, pp 147-156. Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9), doi:10.1007/978-3-319-31584-3_10. See the end of Section 2 (page 9).
-
f:=proc(n) option remember;
if n <= 1 then 1 elif n=2 then 3 else
n*f(n-1)+(n-1)*(n-2)*f(n-2); fi; end;
[seq(f(n),n=0..20)];
-
nxt[{n_,a_,b_}]:={n+1,b,b(n+1)+n(n-1)a}; Join[{1},NestList[nxt,{2,1,3},20][[;;,2]]] (* Harvey P. Dale, Jan 20 2024 *)
A274539
E.g.f.: exp(sum(bell(n)*z^n/n, n=1..infinity)).
Original entry on oeis.org
1, 1, 3, 17, 155, 2079, 38629, 951187, 29979753, 1175837345, 56066617331, 3187704802281, 212628685506643, 16413606252207007, 1449425836362499605, 144977415195565990619, 16285937949513614300369, 2039447464767566886933057, 282862729890000953318773603
Offset: 0
-
a := proc(n): n!*P(n) end: P := proc(n): if n=0 then 1 else P(n):= expand((1/n)*(add(x(n-k) * P(k), k=0..n-1))) fi; end: with(combinat): x := proc(n): bell(n) end: seq(a(n), n=0..18);
-
nmax = 20; CoefficientList[Series[E^(Sum[BellB[n]*z^n/n, {n, 1, nmax}]), {z, 0, nmax}], z] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 29 2016 *)
A291286
a(0)=1, a(1)=2, thereafter a(n) = n*a(n-1)+(n-1)*(n-2)*a(n-2).
Original entry on oeis.org
1, 2, 4, 16, 88, 632, 5552, 57824, 695776, 9500128, 145097152, 2451080192, 45373649024, 913400022656, 19865889564928, 464227147597312, 11599471170191872, 308605525316616704, 8709955613991289856, 259922447412719218688, 8177253768239405504512
Offset: 0
Showing 1-6 of 6 results.
Comments