cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A245185 Triangle read by rows: T(n,k) = number of pseudo-square parallelogram (psp) polyominoes with semiperimeter n+1 and k columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 5, 2, 1, 1, 3, 7, 7, 3, 1, 1, 3, 11, 15, 11, 3, 1, 1, 4, 15, 25, 25, 15, 4, 1, 1, 4, 20, 41, 52, 41, 20, 4, 1, 1, 5, 25, 62, 92, 92, 62, 25, 5, 1, 1, 5, 32, 89, 159, 179, 159, 89, 32, 5, 1, 1, 6, 38, 122, 249, 342, 342, 249, 122, 38, 6, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 20 2014

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,  1;
  1, 2,  2,  1;
  1, 2,  5,  2,  1;
  1, 3,  7,  7,  3,  1;
  1, 3, 11, 15, 11,  3,  1;
  1, 4, 15, 25, 25, 15,  4, 1;
  1, 4, 20, 41, 52, 41, 20, 4, 1;
  ...
		

Crossrefs

Row sums are A244521(n+1).

Programs

  • PARI
    IsPos(v)={for(i=1, #v, if(v[i]<=0, return(0))); 1}
    E(b)={my(v=vector(hammingweight(b)-1), h=0, k=0); if(bittest(b,0), b>>=1); while(k<#v, if(bittest(b,0), k++; v[k]=h, h++); b>>=1); v}
    Row(n)={my(v=vector(n)); forstep(b=2^n, 2*2^n, 2, my(r=E(b), d=b); for(k=1, n, d=bitor(d>>1, bitand(d,1)<Andrew Howroyd, Mar 01 2020

Extensions

Name clarified and terms a(46) and beyond from Andrew Howroyd, Mar 01 2020

A245437 Expansion of x^5/(x^6-x^4-x^2-x+1).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 10, 17, 29, 50, 86, 147, 252, 432, 741, 1270, 2177, 3732, 6398, 10968, 18802, 32232, 55255, 94723, 162382, 278369, 477204, 818064, 1402395, 2404105, 4121322, 7065122, 12111635, 20762798, 35593360, 61017175, 104600848, 179315699
Offset: 0

Views

Author

Vincenzo Librandi, Jul 22 2014

Keywords

Comments

G.f. taken from p. 12 of the Brlek et al. reference.

Crossrefs

Programs

  • Magma
    [n le 6 select Floor(n/6) else Self(n-1)+Self(n-2)+Self(n-4)-Self(n-6): n in [1..50]];
  • Mathematica
    CoefficientList[Series[x^5/(x^6 - x^4 - x^2 - x + 1), {x, 0, 50}], x]
    LinearRecurrence[{1, 1, 0, 1, 0, -1}, {0, 0, 0, 0, 0, 1}, 50] (* Bruno Berselli, Jul 22 2014 *)

Formula

G.f.: x^5/(x^6 - x^4 - x^2 - x + 1).
a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-6) for n>5.
Showing 1-2 of 2 results.