cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A244540 Expansion of phi(q) * (phi(q) + phi(q^2)) / 2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 3, 2, 3, 4, 2, 0, 3, 5, 4, 2, 2, 4, 0, 0, 3, 6, 5, 2, 4, 0, 2, 0, 2, 7, 4, 4, 0, 4, 0, 0, 3, 4, 6, 0, 5, 4, 2, 0, 4, 6, 0, 2, 2, 4, 0, 0, 2, 3, 7, 4, 4, 4, 4, 0, 0, 4, 4, 2, 0, 4, 0, 0, 3, 8, 4, 2, 6, 0, 0, 0, 5, 6, 4, 2, 2, 0, 0, 0, 4, 7, 6, 2, 0, 8, 2
Offset: 0

Views

Author

Michael Somos, Jun 29 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*q + 3*q^2 + 2*q^3 + 3*q^4 + 4*q^5 + 2*q^6 + 3*q^8 + 5*q^9 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 33); A[1] + 3*A[2] + 3*A[3];
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], Sum[ {3, 0, -1, 0, 1, 0, -3, 0}[[ Mod[ d, 8, 1] ]], {d, Divisors @ n}]];
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] (EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2]) / 2, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, [0, 3, 0, -1, 0, 1, 0, -3][d%8 + 1]))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A * (A + subst(A, x, x^2)) / 2, n))};
    
  • Sage
    A = ModularForms( Gamma1(8), 1, prec=33) . basis(); A[0] + 3*A[1] + 3*A[2];
    

Formula

Expansion of f(-q^3, -q^5)^2 * phi(q) / psi(-q) = f(-q^3, -q^5)^2 * chi(q)^3 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [3, -3, 1, 0, 1, -3, 3, -2, ...].
Moebius transform is period 8 sequence [3, 0, -1, 0, 1, 0, -3, 0, ...].
Convolution product of A244526 and A107635. Convolution product of A000122 and A093709.
a(n) = (A004018(n) + A033715(n)) / 2 = A244543(2*n).
a(2*n) = a(n). a(8*n + 3) = 2*A033761(n). a(8*n + 5) = 4*A053692(n). a(8*n + 7) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=0..m} a(k) = Pi*(1 + 1/sqrt(2))/2 = 2.681517... . - Amiram Eldar, Jun 08 2025

A244560 Expansion of f(-x^1, -x^7)^2 in powers of x where f() is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, -2, 1, 0, 0, 0, 0, -2, 2, 0, 2, -2, 0, 0, 1, 0, 0, -2, 0, 0, 1, 0, 2, -2, 0, 0, 0, -2, 2, -2, 0, 0, 2, 0, 2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1, -2, 2, 0, 0, -2, 0, 0, 4, -2, 1, -2, 0, 0, 0, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 2, 0, 2, 0, 2, -2, 0, -2, 0
Offset: 0

Views

Author

Michael Somos, Jun 30 2014

Keywords

Examples

			G.f. = 1 - 2*x + x^2 - 2*x^7 + 2*x^8 + 2*x^10 - 2*x^11 + x^14 - 2*x^17 + ...
G.f. = q^9 - 2*q^17 + q^25 - 2*q^65 + 2*q^73 + 2*q^89 - 2*q^97 + q^121 + ...
		

Crossrefs

Programs

  • Mathematica
    A244560[n_] := SeriesCoefficient[(QPochhammer[q^1, q^8]* QPochhammer[q^7, q^8]*QPochhammer[q^8, q^8])^2, {q, 0, n}]; Table[A244560[n], {n,0,50}] (* G. C. Greubel, Jun 17 2017 *)
  • PARI
    {a(n) = (-1)^n * sum(k=0, n, issquare(16*k + 9) * issquare(16*(n-k) + 9))};

Formula

G.f.: f(-x, -x^7)^2 = (Sum_{k in Z} (-1)^k * x^(4*k^2 - 3*k))^2.
Convolution square of A244525.
a(9*n) = A244526(n). a(9*n + 3) = a(9*n + 6) = 0. a(49*n + 5) = a(n-1).

A245432 Expansion of f(-q^3, -q^5)^2 / (psi(-q) * phi(q^2)) in powers of q where phi(), psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, -1, -2, 3, 4, -6, -8, 11, 15, -20, -26, 34, 44, -56, -72, 91, 114, -143, -178, 220, 272, -334, -408, 498, 605, -732, -884, 1064, 1276, -1528, -1824, 2171, 2580, -3058, -3616, 4269, 5028, -5910, -6936, 8124, 9498, -11088, -12922, 15034, 17468, -20264
Offset: 0

Views

Author

Michael Somos, Jul 21 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q - q^2 - 2*q^3 + 3*q^4 + 4*q^5 - 6*q^6 - 8*q^7 + 11*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2, q^4] / QPochhammer[ q^4, q^8]^2)^2 QPochhammer[ q^3, q^8] QPochhammer[ q^5, q^8] / (QPochhammer[ q^1, q^8] QPochhammer[ q^7, q^8]), {q, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[0, -1, 2, 1, -4, 1, 2, -1][k%8 + 1]), n))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); (-1)^(n \ 2) * polcoeff( (1 + eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A))) / 2, n))};

Formula

Expansion of (f(-q^3, -q^5) / f(-q^1, -q^7)) * (psi(q^4) / phi(q^2)) in powers of q where phi(), psi(), f() are Ramanujan theta functions.
Euler transform of period 8 sequence [ 1, -2, -1, 4, -1, -2, 1, 0, ...].
Convolution quotient of A244526 and A226192.
a(n) = (-1)^floor(n/2) * A115671(n).
a(n) = A224216(n) unless n=0. a(2*n+1) = A210063(n).
Showing 1-3 of 3 results.