A244550 a(n) = first odd Wieferich prime to base a(n-1) for n > 1, with a(1) = 2.
2, 1093, 5, 20771, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71, 3, 11, 71
Offset: 1
Links
- R. Fischer, Thema: Fermatquotient B^(P-1) == 1 (mod P^2)
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Programs
-
Magma
[2, 1093, 5, 20771] cat &cat [[3, 11, 71]^^30]; // Wesley Ivan Hurt, Jun 30 2016
-
Maple
2,1093,5,20771,seq(op([3, 11, 71]), n=5..50); # Wesley Ivan Hurt, Jun 30 2016
-
Mathematica
Join[{2, 1093, 5, 20771},LinearRecurrence[{0, 0, 1},{3, 11, 71},66]] (* Ray Chandler, Aug 25 2015 *)
-
PARI
i=0; a=2; print1(a, ", "); while(i<100, forprime(p=2, 10^6, if(Mod(a, p^2)^(p-1)==1 && p%2!=0, print1(p, ", "); i++; a=p; break({n=1}))))
Formula
From Wesley Ivan Hurt, Jun 30 2016: (Start)
G.f.: x*(2+1093*x+5*x^2+20769*x^3-1090*x^4+6*x^5-20700*x^6) / (1-x^3).
a(n) = a(n-3) for n>7.
a(n) = (85 - 52*cos(2*n*Pi/3) + 68*sqrt(3)*sin(2*n*Pi/3))/3 for n>4. (End)
Comments