cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244605 Numerators of the Akiyama-Tanigawa transform applied to 1/(n+1) with -1/2 instead of 1/2.

Original entry on oeis.org

1, 3, 19, 7, 449, 31, 2647, 127, 7649, 511, 67523, 2047, 11178659, 8191, 98305, 32767, 33419233, 131071, 209233981, 524287, 345855139, 2097151, 579668327, 8388607, 45565432859, 33554431, 411206281, 134217727, 209789384821, 536870911, 23993971665011, 2147483647, -5518887720767
Offset: 0

Views

Author

Paul Curtz, Jul 01 2014

Keywords

Comments

The autosequence of the second kind A164555(n)/A027642(n) = 1, 1/2, 1/6, 0, -1/30, 0, ... (the second Bernoulli numbers) is the binomial transform of A027641(n)/A027642(n) = 1, -1/2, 1/6, 0, -1/30, 0, ... (the first Bernoulli numbers). Hence the name.
The Akiyama-Tanigawa transform applied to 1, -1/2, 1/3, 1/4, 1/5, 1/6, ... is:
1, -1/2, 1/3, 1/4, 1/5, ...
3/2, -5/3, 1/4, 1/5, 1/6, ...
19/6, -23/6, 3/20, 2/15, 5/42, ...
7, -239/30, 1/20, 2/35, 5/84, ... .
The first column is a(n)/b(n) = 1, 3/2, 19/6, 7, 449/30, 31, 2647/42, 127, 7649/30, 511, 67523/66, 2047, ..., where the denominators are b(n) = A027642(n).
By the formula below, the Bernoulli numbers are linked to the Mersenne numbers A000225 (2^n-1).

Crossrefs

Programs

  • Mathematica
    a[n_] := BernoulliB[n]+2^n-1 // Numerator; a[1] = 3; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jul 25 2014 *)
  • PARI
    a(n) = my(b = numerator(bernfrac(n))/denominator(bernfrac(n))); if (n == 1, numerator(- b + 2^n - 1), numerator(b + 2^n - 1)); \\ Michel Marcus, Jul 18 2014
    
  • PARI
    {a(n) = if( n<0, 0, 2*(n==1) + numerator( bernfrac(n) + 2^n - 1))}; /* Michael Somos, Aug 05 2014 */

Formula

a(n) = numerator of A164555(n)/A027642(n) + A000225(n).

Extensions

a(12)-a(32) from Jean-François Alcover, Jul 01 2014