cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A024707 Positions of multiples of 5 in A024702.

Original entry on oeis.org

5, 8, 10, 11, 13, 17, 18, 20, 22, 24, 26, 29, 32, 34, 35, 36, 41, 42, 43, 46, 47, 50, 52, 53, 54, 57, 58, 60, 64, 67, 70, 72, 75, 77, 79, 80, 81, 82, 83, 85, 87, 89, 92, 94, 95, 97, 98, 100, 104, 105, 109, 110, 114, 115, 116, 120, 121, 125, 126, 127, 128, 131, 133, 135, 136, 140, 141
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

Numbers n such that ((prime(n) mod 5) mod 3) = 1; e.g., prime(10) = 29, (29 mod 5) = 4, and (4 mod 3) = 1. Clark Kimberling, Jul 05 2014

A244739 Numbers k such that (prime(k) mod 5) == 0 (mod 3).

Original entry on oeis.org

2, 3, 6, 9, 14, 16, 21, 23, 27, 30, 38, 40, 44, 48, 51, 56, 61, 62, 65, 71, 74, 76, 84, 86, 90, 96, 99, 103, 108, 112, 117, 119, 122, 124, 130, 132, 137, 143, 147, 150, 153, 162, 166, 170, 174, 179, 183, 185, 188, 191, 192, 196, 198, 200, 208, 213, 220, 224
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2014

Keywords

Comments

Every positive integer is in exactly one of the sequences A244739, A024707, A244741.

Examples

			n ... prime(n) mod 5 mod 3
1 ..... 2 ..... 2 ... 2
2 ..... 3 ..... 3 ... 0
3 ..... 5 ..... 0 ... 0
4 ..... 7 ..... 2 ... 2
5 ..... 11 .... 1 ... 1
6 ..... 13 .... 3 ... 0
		

Crossrefs

Cf. A039703, A244738, A024707, A244741, A244735. Essentially the same as A049508.

Programs

  • Mathematica
    z = 300; u = Mod[Table[Mod[Prime[n], 5], {n, 1, z}], 3] (* A244738 *)
    v1 = Flatten[Position[u, 0]]  (* A244739 *)
    v2 = Flatten[Position[u, 1]]  (* A024707 *)
    v3 = Flatten[Position[u, 2]]  (* A244741 *)

A244741 Numbers k such that (prime(k) mod 5) == 2 (mod 3).

Original entry on oeis.org

1, 4, 7, 12, 15, 19, 25, 28, 31, 33, 37, 39, 45, 49, 55, 59, 63, 66, 68, 69, 73, 78, 88, 91, 93, 101, 102, 106, 107, 111, 113, 118, 123, 129, 134, 138, 139, 144, 148, 151, 154, 155, 159, 161, 163, 165, 168, 181, 184, 187, 195, 199, 203, 206, 211, 214, 217
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2014

Keywords

Comments

Every positive integer is in exactly one of the sequences A244739, A024707, A244741.

Examples

			n ... prime(n) mod 5 mod 3
1 ..... 2 ..... 2 ... 2
2 ..... 3 ..... 3 ... 0
3 ..... 5 ..... 0 ... 0
4 ..... 7 ..... 2 ... 2
5 ..... 11 .... 1 ... 1
6 ..... 13 .... 3 ... 0
		

Crossrefs

Cf. A039703, A244738, A244739, A024707, A244735. Essentially the same as A049509.

Programs

  • Maple
    A244741:=n->`if`(((ithprime(n) mod 5) mod 3) = 2, n, NULL): seq(A244741(n), n=1..250); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    z = 300; u = Mod[Table[Mod[Prime[n], 5], {n, 1, z}], 3] (* A244738 *)
    v1 = Flatten[Position[u, 0]]  (* A244739 *)
    v2 = Flatten[Position[u, 1]]  (* A024707 *)
    v3 = Flatten[Position[u, 2]]  (* A244741 *)
Showing 1-3 of 3 results.