cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A244738 a(n) = (prime(n) mod 5) mod 3.

Original entry on oeis.org

2, 0, 0, 2, 1, 0, 2, 1, 0, 1, 1, 2, 1, 0, 2, 0, 1, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 2, 1, 0, 2, 1, 2, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 0, 2, 1, 0, 1, 1, 1, 2, 0, 1, 1, 2, 1, 0, 0, 2, 1, 0, 2, 1, 2, 2, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 1, 1, 1, 1, 0, 1, 0
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2014

Keywords

Examples

			n ... prime(n) mod 5 mod 3
1 ..... 2 ..... 2 ... 2
2 ..... 3 ..... 3 ... 0
3 ..... 5 ..... 0 ... 0
4 ..... 7 ..... 2 ... 2
5 ..... 11 .... 1 ... 1
6 ..... 13 .... 3 ... 0
		

Crossrefs

Programs

  • Mathematica
    z = 300; u = Mod[Table[Mod[Prime[n], 5], {n, 1, z}], 3] (* A244738 *)
    v1 = Flatten[Position[u, 0]]  (* A244739 *)
    v2 = Flatten[Position[u, 1]]  (* A024707 *)
    v3 = Flatten[Position[u, 2]]  (* A244741 *)
    Mod[Mod[Prime[Range[90]],5],3] (* Harvey P. Dale, Aug 14 2019 *)

A244739 Numbers k such that (prime(k) mod 5) == 0 (mod 3).

Original entry on oeis.org

2, 3, 6, 9, 14, 16, 21, 23, 27, 30, 38, 40, 44, 48, 51, 56, 61, 62, 65, 71, 74, 76, 84, 86, 90, 96, 99, 103, 108, 112, 117, 119, 122, 124, 130, 132, 137, 143, 147, 150, 153, 162, 166, 170, 174, 179, 183, 185, 188, 191, 192, 196, 198, 200, 208, 213, 220, 224
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2014

Keywords

Comments

Every positive integer is in exactly one of the sequences A244739, A024707, A244741.

Examples

			n ... prime(n) mod 5 mod 3
1 ..... 2 ..... 2 ... 2
2 ..... 3 ..... 3 ... 0
3 ..... 5 ..... 0 ... 0
4 ..... 7 ..... 2 ... 2
5 ..... 11 .... 1 ... 1
6 ..... 13 .... 3 ... 0
		

Crossrefs

Cf. A039703, A244738, A024707, A244741, A244735. Essentially the same as A049508.

Programs

  • Mathematica
    z = 300; u = Mod[Table[Mod[Prime[n], 5], {n, 1, z}], 3] (* A244738 *)
    v1 = Flatten[Position[u, 0]]  (* A244739 *)
    v2 = Flatten[Position[u, 1]]  (* A024707 *)
    v3 = Flatten[Position[u, 2]]  (* A244741 *)

A244741 Numbers k such that (prime(k) mod 5) == 2 (mod 3).

Original entry on oeis.org

1, 4, 7, 12, 15, 19, 25, 28, 31, 33, 37, 39, 45, 49, 55, 59, 63, 66, 68, 69, 73, 78, 88, 91, 93, 101, 102, 106, 107, 111, 113, 118, 123, 129, 134, 138, 139, 144, 148, 151, 154, 155, 159, 161, 163, 165, 168, 181, 184, 187, 195, 199, 203, 206, 211, 214, 217
Offset: 1

Views

Author

Clark Kimberling, Jul 05 2014

Keywords

Comments

Every positive integer is in exactly one of the sequences A244739, A024707, A244741.

Examples

			n ... prime(n) mod 5 mod 3
1 ..... 2 ..... 2 ... 2
2 ..... 3 ..... 3 ... 0
3 ..... 5 ..... 0 ... 0
4 ..... 7 ..... 2 ... 2
5 ..... 11 .... 1 ... 1
6 ..... 13 .... 3 ... 0
		

Crossrefs

Cf. A039703, A244738, A244739, A024707, A244735. Essentially the same as A049509.

Programs

  • Maple
    A244741:=n->`if`(((ithprime(n) mod 5) mod 3) = 2, n, NULL): seq(A244741(n), n=1..250); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    z = 300; u = Mod[Table[Mod[Prime[n], 5], {n, 1, z}], 3] (* A244738 *)
    v1 = Flatten[Position[u, 0]]  (* A244739 *)
    v2 = Flatten[Position[u, 1]]  (* A024707 *)
    v3 = Flatten[Position[u, 2]]  (* A244741 *)
Showing 1-3 of 3 results.