A244763 Prime numbers ending in the prime number 13.
13, 113, 313, 613, 1013, 1213, 1613, 1913, 2113, 2213, 2713, 3313, 3413, 3613, 4013, 4513, 4813, 5113, 5413, 5813, 6113, 7013, 7213, 8513, 8713, 9013, 9413, 9613, 10313, 10513, 10613, 11113, 11213, 11813, 12113, 12413, 12613, 12713, 13313, 13513, 13613, 13913
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. Prime numbers ending in the prime number k: A030431 (k=3), A030432 (k=7), A167442 (k=11), this sequence (k=13), A244764 (k=17), A244765 (k=19), A244766 (k=23), A244767 (k=29), A167388 (k=31), A244768 (k=37), A167443 (k=41), A244769 (k=43), A244770 (k=47), A244771 (k=53), A244772 (k=59), A167445 (k=61), A244773 (k=67), A167441 (k=71), A244774 (k=73), A244775 (k=79), A244776 (k=83), A244777 (k=89), A244778 (k=97), A167626 (k=101), A167627 (k=163).
Programs
-
Magma
[n: n in PrimesUpTo(14000) | n mod 100 eq 13];
-
Maple
select(isprime, [13+100*n $ n=0..1000]); # Robert Israel, Jul 06 2014
-
Mathematica
Select[Prime[Range[5, 2000]], Take[IntegerDigits[#], -2]=={1, 3}&]
-
PARI
select(x->(x % 100)==13, primes(2000)) \\ Michel Marcus, Jul 06 2014
-
Sage
[p for p in primes(14000) if mod(p,100) == 13] # Bruno Berselli, Jul 07 2014
Comments