cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A244763 Prime numbers ending in the prime number 13.

Original entry on oeis.org

13, 113, 313, 613, 1013, 1213, 1613, 1913, 2113, 2213, 2713, 3313, 3413, 3613, 4013, 4513, 4813, 5113, 5413, 5813, 6113, 7013, 7213, 8513, 8713, 9013, 9413, 9613, 10313, 10513, 10613, 11113, 11213, 11813, 12113, 12413, 12613, 12713, 13313, 13513, 13613, 13913
Offset: 1

Views

Author

Vincenzo Librandi, Jul 06 2014

Keywords

Comments

Also primes of the form 100*n+13. Subsequence of A141885, A141937, A166573.

Crossrefs

Cf. Prime numbers ending in the prime number k: A030431 (k=3), A030432 (k=7), A167442 (k=11), this sequence (k=13), A244764 (k=17), A244765 (k=19), A244766 (k=23), A244767 (k=29), A167388 (k=31), A244768 (k=37), A167443 (k=41), A244769 (k=43), A244770 (k=47), A244771 (k=53), A244772 (k=59), A167445 (k=61), A244773 (k=67), A167441 (k=71), A244774 (k=73), A244775 (k=79), A244776 (k=83), A244777 (k=89), A244778 (k=97), A167626 (k=101), A167627 (k=163).

Programs

  • Magma
    [n: n in PrimesUpTo(14000) | n mod 100 eq 13];
    
  • Maple
    select(isprime, [13+100*n $ n=0..1000]); # Robert Israel, Jul 06 2014
  • Mathematica
    Select[Prime[Range[5, 2000]], Take[IntegerDigits[#], -2]=={1, 3}&]
  • PARI
    select(x->(x % 100)==13, primes(2000)) \\ Michel Marcus, Jul 06 2014
    
  • Sage
    [p for p in primes(14000) if mod(p,100) == 13] # Bruno Berselli, Jul 07 2014

A255774 Tree of upper Wythoff numbers (A001950) generated as the 2-component of the graph described at A095903.

Original entry on oeis.org

2, 5, 7, 10, 13, 15, 20, 18, 23, 26, 34, 28, 36, 41, 54, 31, 39, 44, 57, 47, 60, 68, 89, 49, 62, 70, 91, 75, 96, 109, 143, 52, 65, 73, 94, 78, 99, 112, 146, 81, 102, 115, 149, 123, 157, 178, 233, 83, 104, 117, 151, 125, 159, 180, 235, 130, 164, 185, 240, 198
Offset: 1

Views

Author

Clark Kimberling, Mar 06 2015

Keywords

Comments

This sequence and A255773 partition the positive integers.

Examples

			To generate the tree of lazy Fibonacci representations as in A095903, start with 1,2. Suffix the next two Fibonacci numbers, getting 1+2, 1+3; 2+3, 2+5. Suffix the next two Fibonacci numbers, getting 1+2+3, 1+2+5, 1+3+5, 1+3+8; 2+3+5, 2+3+8, 2+5+8, 2+5+13. Continue forever. A255773 is the tree of numbers having root (initial summand) 1, and A255774 is the tree of numbers having root (initial summand) 2.
		

Crossrefs

Programs

  • Mathematica
    width = 6;t = Map[Total, Fibonacci[Flatten[NestList[Flatten[Map[{Join[#, {Last[#] +1}], Join[#, {Last[#] + 2}]} &, #], 1] &, {{2}, {3}}, width], 1]]](*A095903*)
    Map[t[[#]] &, Apply[Range, {2^Range[#] - 1, 3 2^(Range[#] - 1) - 2}]] &[width + 1] (*A255773*)
    Map[t[[#]] &,Apply[Range, {3 2^(Range[#] - 1) - 1, 2 (2^Range[#] - 1)}]] &[width + 1] (*A255774*) (* Peter J. C. Moses, Mar 06 2015 *)
Showing 1-2 of 2 results.