A244805 The 240-degree spoke (or ray) of a hexagonal spiral of Ulam.
1, 16, 55, 118, 205, 316, 451, 610, 793, 1000, 1231, 1486, 1765, 2068, 2395, 2746, 3121, 3520, 3943, 4390, 4861, 5356, 5875, 6418, 6985, 7576, 8191, 8830, 9493, 10180, 10891, 11626, 12385, 13168, 13975, 14806, 15661, 16540, 17443, 18370, 19321, 20296, 21295, 22318, 23365, 24436, 25531
Offset: 1
Examples
See A056105 example section for its diagram.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[12*n^2-21*n+10: n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
-
Maple
A244805:=n->12*n^2 - 21*n + 10: seq(A244805(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
-
Mathematica
f[n_] := 12 n^2 - 21 n + 10; Array[f, 47]
-
PARI
vector(50, n, 12*n^2 - 21*n + 10) \\ Michel Marcus, Jul 06 2014
-
PARI
Vec(x*(1 + 13*x + 10*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
Formula
a(n) = 12*n^2 - 21*n + 10 (see A056105).
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 13*x + 10*x^2) / (1 - x)^3.
(End)
Comments