cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244805 The 240-degree spoke (or ray) of a hexagonal spiral of Ulam.

Original entry on oeis.org

1, 16, 55, 118, 205, 316, 451, 610, 793, 1000, 1231, 1486, 1765, 2068, 2395, 2746, 3121, 3520, 3943, 4390, 4861, 5356, 5875, 6418, 6985, 7576, 8191, 8830, 9493, 10180, 10891, 11626, 12385, 13168, 13975, 14806, 15661, 16540, 17443, 18370, 19321, 20296, 21295, 22318, 23365, 24436, 25531
Offset: 1

Views

Author

Robert G. Wilson v, Jul 06 2014

Keywords

Comments

Numbers of the form 1 + k/2 + k^2/3 (associated k are in A008588). - Bruno Berselli, Jan 20 2017

Examples

			See A056105 example section for its diagram.
		

Crossrefs

Cf. A281333 (1 + floor(n/2) + floor(n^2/3)).

Programs

  • Magma
    [12*n^2-21*n+10: n in [1..50]]; // Wesley Ivan Hurt, Jul 06 2014
  • Maple
    A244805:=n->12*n^2 - 21*n + 10: seq(A244805(n), n=1..50); # Wesley Ivan Hurt, Jul 06 2014
  • Mathematica
    f[n_] := 12 n^2 - 21 n + 10; Array[f, 47]
  • PARI
    vector(50, n, 12*n^2 - 21*n + 10) \\ Michel Marcus, Jul 06 2014
    
  • PARI
    Vec(x*(1 + 13*x + 10*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
    

Formula

a(n) = 12*n^2 - 21*n + 10 (see A056105).
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
G.f.: x*(1 + 13*x + 10*x^2) / (1 - x)^3.
(End)