cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244845 Binary representation of 4^n - 2^(n+1) - 1.

Original entry on oeis.org

111, 101111, 11011111, 1110111111, 111101111111, 11111011111111, 1111110111111111, 111111101111111111, 11111111011111111111, 1111111110111111111111, 111111111101111111111111, 11111111111011111111111111, 1111111111110111111111111111
Offset: 2

Views

Author

Colin Barker, Jul 07 2014

Keywords

Examples

			a(3) is 101111 because A093112(3) = 47 which is 101111 in base 2.
		

Crossrefs

Cf. A093112.

Programs

  • Mathematica
    Table[FromDigits[IntegerDigits[4^n-2^(n+1)-1,2]],{n,2,15}] (* Harvey P. Dale, Oct 03 2016 *)
  • PARI
    vector(100, n, (100^(n+1)-9*10^(2+n)-1)/9)
    
  • PARI
    Vec(x^2*(89000*x^2-88790*x-111)/((x-1)*(10*x-1)*(100*x-1)) + O(x^100))
    
  • PARI
    a(n) = subst(Pol(binary(4^n-2^(n+1)-1)), x, 10); \\ Michel Marcus, Jul 08 2014

Formula

a(n) = 111*a(n-1)-1110*a(n-2)+1000*a(n-3).
a(n) = (-1-9*10^(1+n)+100^n)/9.
G.f.: x^2*(89000*x^2-88790*x-111) / ((x-1)*(10*x-1)*(100*x-1)).