cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244853 Let d(1)d(2)... d(q) denote the decimal expansion of a prime number n > 9. The sequence lists the primes such that replacing each digit d(i) with d(i+1) copies for i = 1..q-1 and d(q) with d(1) copies produces a prime. Zeros are not allowed.

Original entry on oeis.org

11, 17, 71, 113, 131, 151, 167, 181, 211, 227, 281, 431, 467, 521, 547, 617, 743, 829, 853, 883, 1163, 1193, 1733, 2131, 2137, 3121, 3181, 3413, 3457, 3727, 4441, 5351, 6143, 6151, 6473, 6779, 6823, 6977, 8263, 8293, 8423, 9787, 11273, 11321, 11369, 11483
Offset: 1

Views

Author

Michel Lagneau, Jul 07 2014

Keywords

Examples

			6473 is in the sequence because 6473 becomes 66664444444777333333 which is also prime.
		

Crossrefs

Cf. A057628.

Programs

  • Maple
    for n from 5 to 2500 do:
         p := ithprime(n): s :=0: j :=0:
         x := convert(p, base, 10): n1 := nops(x):
         q := mul(x[i], i=1..n1):
         if q<>0 then
             for m from n1 by -1 to 2 do:
                s := s*10^x[m-1]+add(x[m]*10^(i-1+j),i=1.. x[m-1]):
             od:
             s1 := add(x[1]*10^(i-1), i=1..x[n1]):
             z := s*10^x[n1]+s1:
             if isprime(z) then printf(`%d, `, p) fi:
         fi:
    od:
  • Mathematica
    deQ[n_]:=Module[{idn=IntegerDigits[n]},idn=Join[idn,{idn[[1]]}];FreeQ[ idn,0] && PrimeQ[FromDigits[Flatten[Table[#[[1]],{#[[2]]}]&/@ Partition[ idn,2,1]]]]]; Select[ Prime[Range[5,1500]],deQ] (* Harvey P. Dale, Mar 26 2016 *)
  • PARI
    isok(n) = {if (isprime(n) && (d=digits(n)) && (#d>1) && vecmin(d), s = ""; for (id = 1, #d, if (id != #d, idk = d[id+1], idk = d[1]); for (k=1, idk, s = concat(s, d[id]));); isprime(eval(s)););} \\ Michel Marcus, Jul 09 2014