A244853 Let d(1)d(2)... d(q) denote the decimal expansion of a prime number n > 9. The sequence lists the primes such that replacing each digit d(i) with d(i+1) copies for i = 1..q-1 and d(q) with d(1) copies produces a prime. Zeros are not allowed.
11, 17, 71, 113, 131, 151, 167, 181, 211, 227, 281, 431, 467, 521, 547, 617, 743, 829, 853, 883, 1163, 1193, 1733, 2131, 2137, 3121, 3181, 3413, 3457, 3727, 4441, 5351, 6143, 6151, 6473, 6779, 6823, 6977, 8263, 8293, 8423, 9787, 11273, 11321, 11369, 11483
Offset: 1
Examples
6473 is in the sequence because 6473 becomes 66664444444777333333 which is also prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A057628.
Programs
-
Maple
for n from 5 to 2500 do: p := ithprime(n): s :=0: j :=0: x := convert(p, base, 10): n1 := nops(x): q := mul(x[i], i=1..n1): if q<>0 then for m from n1 by -1 to 2 do: s := s*10^x[m-1]+add(x[m]*10^(i-1+j),i=1.. x[m-1]): od: s1 := add(x[1]*10^(i-1), i=1..x[n1]): z := s*10^x[n1]+s1: if isprime(z) then printf(`%d, `, p) fi: fi: od:
-
Mathematica
deQ[n_]:=Module[{idn=IntegerDigits[n]},idn=Join[idn,{idn[[1]]}];FreeQ[ idn,0] && PrimeQ[FromDigits[Flatten[Table[#[[1]],{#[[2]]}]&/@ Partition[ idn,2,1]]]]]; Select[ Prime[Range[5,1500]],deQ] (* Harvey P. Dale, Mar 26 2016 *)
-
PARI
isok(n) = {if (isprime(n) && (d=digits(n)) && (#d>1) && vecmin(d), s = ""; for (id = 1, #d, if (id != #d, idk = d[id+1], idk = d[1]); for (k=1, idk, s = concat(s, d[id]));); isprime(eval(s)););} \\ Michel Marcus, Jul 09 2014