cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244885 Expansion of (1-6*x+12*x^2-8*x^3+x^4)/((1-2*x)^2*(1-3*x+x^2)).

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 121, 354, 1021, 2901, 8130, 22513, 61713, 167746, 452789, 1215197, 3246050, 8637641, 22912633, 60624546, 160075117, 421960101, 1110785922, 2920883425, 7673884449, 20146907266, 52863306341, 138644338349, 363489139106, 952695494201
Offset: 0

Views

Author

N. J. A. Sloane, Jul 09 2014

Keywords

Crossrefs

Programs

  • Magma
    [IsZero(n) select 1 else Fibonacci(2*n+1)-(n+1)*2^(n-2): n in [0..40]]; // Bruno Berselli, Jul 10 2014
    
  • Mathematica
    CoefficientList[Series[(1 - 6 x + 12 x^2 - 8 x^3 + x^4)/((1 - 2 x)^2 (1 - 3 x + x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 10 2014 *)
    LinearRecurrence[{7,-17,16,-4},{1,1,2,5,14},50] (* Harvey P. Dale, Jun 25 2022 *)
  • PARI
    Vec((1-6*x+12*x^2-8*x^3+x^4)/((1-2*x)^2*(1-3*x+x^2)) + O(x^50)) \\ Colin Barker, Apr 15 2016

Formula

G.f.: (1 - x)*(1 - 5*x + 7*x^2 - x^3)/((1 - 2*x)^2 (1 - 3*x + x^2)).
a(n) = Fibonacci(2*n+1) - (n+1)*2^(n-2) for n>0. [Bruno Berselli, Jul 10 2014]
From Colin Barker, Apr 15 2016: (Start)
a(n) = ((2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5)) + (1+sqrt(5))*(3+sqrt(5))^n))/sqrt(5) - 2^(-2+n)*(1+n)) for n>0.
a(n) = 7*a(n-1)-17*a(n-2)+16*a(n-3)-4*a(n-4) for n>4.
(End)