cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244920 Decimal expansion of 2*log(1+sqrt(2)), the integral over the square [0,1]x[0,1] of 1/sqrt(x^2+y^2) dx dy.

Original entry on oeis.org

1, 7, 6, 2, 7, 4, 7, 1, 7, 4, 0, 3, 9, 0, 8, 6, 0, 5, 0, 4, 6, 5, 2, 1, 8, 6, 4, 9, 9, 5, 9, 5, 8, 4, 6, 1, 8, 0, 5, 6, 3, 2, 0, 6, 5, 6, 5, 2, 3, 2, 7, 0, 8, 2, 1, 5, 0, 6, 5, 9, 1, 2, 1, 7, 3, 0, 6, 7, 5, 4, 3, 6, 8, 4, 4, 4, 0, 5, 2, 1, 7, 5, 6, 6, 7, 4, 1, 3, 7, 8, 3, 8, 2, 0, 5, 1, 2, 0, 8, 5, 7
Offset: 1

Views

Author

Jean-François Alcover, Jul 08 2014

Keywords

Comments

Number field regulator of the cyclotomic number field Q(zeta_8), where zeta_8 = sqrt(i), an eighth root of 1. - Alonso del Arte, Mar 11 2017

Examples

			1.7627471740390860504652186499595846180563206565232708215065912173...
		

Crossrefs

Equals twice A091648. - Michel Marcus, Mar 18 2017
Cf. A156035.

Programs

  • Mathematica
    RealDigits[2 * Log[1 + Sqrt[2]], 10, 101] // First
    RealDigits[NumberFieldRegulator[Sqrt[I]], 10, 100][[1]] (* Alonso del Arte, Mar 11 2017 *)
  • PARI
    2*asinh(1) \\ Michel Marcus, Mar 18 2017

Formula

Equals 2*arcsinh(1).
Equals Integral_{x>=1} 1/(x*(1+x)^(1/2)) dx. - Pointed out by Robert FERREOL.
Equals arccosh(3). - Vaclav Kotesovec, Dec 11 2016
Equals Integral_{x>=1} arcsinh(x)/x^2 dx. - Amiram Eldar, Jun 26 2021
Equals Integral_{x = 0..Pi/2} x/cos(x/2) dx. - Peter Bala, Aug 13 2024
Equals log(A156035). - Hugo Pfoertner, Aug 17 2024
Equals arcsinh(2*sqrt(2)). - Akiva Weinberger, Dec 03 2024
Equals Integral_{x=0..oo} erf(sqrt(x))/(x*e^x) dx. - Kritsada Moomuang, May 25 2025