cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244926 Numbers m such that there is an integer k with the property that antisigma(m) = k * sigma(m) + k.

Original entry on oeis.org

1, 2, 247, 2279, 9167, 57479, 200479, 518039, 2119207, 3685439, 9240079, 16384279, 31536647, 101601359, 140558807, 189771287, 299142967, 354032447, 384150199, 486103279, 565468637, 802008239, 853795074, 1107541759, 1328438479, 1494742004, 1580837719, 1768013279
Offset: 1

Views

Author

Jaroslav Krizek, Jul 08 2014

Keywords

Comments

Numbers m such that A244329(m) = floor(antisigma(m) / sigma(m)) = antisigma(m) mod sigma(m) = A232324(n).
Corresponding values of integers k: 0, 0, 108, 1092, 4488, 28500, 99792, 258300, 1058148, ...
Numbers m such that sigma(m) + 1 divides antisigma(m). - Kevin P. Thompson, Nov 27 2021

Examples

			247 is in sequence because 30348 = antisigma(247) = 108 * sigma(247) + 108 = 108*280 + 108.
		

Crossrefs

Cf. A024816 (antisigma), A000203 (sigma), A244329, A232324.

Programs

  • Magma
    [n: n in [1..100000] | Floor(((n*(n+1)div 2) - (SumOfDivisors(n))) div (SumOfDivisors(n))) eq ((n*(n+1)div 2) - (SumOfDivisors(n))) mod (SumOfDivisors(n))]
    
  • PARI
    isok(m) = my(s=sigma(m)); denominator((m*(m+1)/2-s)/(s+1)) == 1; \\ Michel Marcus, Jan 21 2022

Extensions

a(10)-a(28) from Kevin P. Thompson, Nov 27 2021