A244973 a(n) = Sum_{k=0..n} (-1)^k*C(n, k)^2*C(2*k, k), where C(n, k) denotes the binomial coefficient n!/(k!*(n-k)!).
1, -1, -1, 17, -65, 49, 881, -5489, 12223, 42785, -479951, 1746271, 440881, -39651457, 212039855, -326783183, -2817155137, 23175692033, -68726927071, -128775914225, 2285692892785, -10156877725985, 6169206210815, 196882990135745, -1274770281690575
Offset: 0
Examples
a(3) = 17 since C(3,0)^2*C(2*0,0) - C(3,1)^2*C(2,1) + C(3,2)^2*C(4,2) - C(3,3)^2*C(6,3) = 1 - 18 + 54 - 20 = 17.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..200
- V. J. Guo, G.-S. Mao and H. Pan, Proof of a conjecture involving Sun polynomials, J. Difference Equ. Appl., 22(2016), no. 8, 1184-1197; also arXiv:1511.04005 [math.NT], 2015.
- Zhi-Wei Sun, Congruences involving g_n(x) = sum_{k=0}^n C(n,k)^2*C(2k,k)*x^k, arXiv:1407.0967 [math.NT], 2014-2016.
- Zhi-Wei Sun, Congruences involving g_n(x) = sum_{k=0}^n C(n,k)^2*C(2k,k)*x^k, Ramanujan J. 40 (2016), no. 3, 511-533.
- Zhi-Wei Sun, Supercongruences involving Lucas sequences, arXiv:1016.03384 [math.NT], 2016.
Programs
-
Maple
a := n -> hypergeom([1/2, -n, -n], [1, 1], -4): seq(simplify(a(n)), n = 0..24); # Peter Luschny, Mar 16 2025
-
Mathematica
s[n_]:=Sum[Binomial[n,k]^2*Binomial[2k,k](-1)^k,{k,0,n}] Table[s[n],{n,0,20}]
-
PARI
a(n) = sum(k=0, n, (-1)^k*binomial(n,k)^2*binomial(2*k,k)); \\ Michel Marcus, Nov 13 2016
Formula
Recurrence (obtained via the Zeilberger algorithm):
(n+3)^2*(4n+5)*a(n+3) + (20n^3+125n^2+254n+165)*a(n+2) + (76n^3+399n^2+678n+375)*a(n+1) - 25*(n+1)^2*(4n+9)*a(n) = 0.
Lim_sup_{n->oo} |a(n)|^(1/n) = 5. - Vaclav Kotesovec, Jul 13 2014
a(n) = Sum_{k = 0..n} (-1)^(n-k)*C(n,2*k)^2*C(2*k,k) = Sum_{k = 0..n} (-1)^(n-k)*C(n,k)*C(n,2*k)*C(n-k,k). - Zhi-Wei Sun, Nov 12 2016
Conjecture: a(n) = Sum_{k = 0..n} binomial(n, k)*b(k), where b(n) = Sum_{k = 0..n} (-1)^k*binomial(n, k)^2*binomial(2*k, n). [Added Mar 16 2025: this conjecture can be verified using the MulZeil procedure in Doron Zeilberger's MultiZeilberger package for Maple]. - Peter Bala, Jul 19 2024
Comments