cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244976 Decimal expansion of Pi/(8*sqrt(2)).

Original entry on oeis.org

2, 7, 7, 6, 8, 0, 1, 8, 3, 6, 3, 4, 8, 9, 7, 8, 9, 0, 4, 3, 8, 4, 9, 2, 5, 6, 1, 8, 7, 8, 7, 9, 3, 3, 5, 6, 1, 6, 3, 4, 1, 3, 8, 5, 5, 5, 8, 5, 9, 8, 0, 6, 3, 8, 9, 4, 2, 8, 3, 7, 2, 2, 5, 4, 3, 4, 7, 7, 7, 1, 7, 4, 5, 6, 8, 7, 1, 7, 1, 1, 9, 4, 1, 0, 9, 5, 7, 9, 3, 3, 4, 2, 2, 7, 9, 7, 8, 2, 7, 3, 3, 5, 2, 1, 3
Offset: 0

Views

Author

Jean-François Alcover, Jul 09 2014

Keywords

Examples

			0.277680183634897890438492561878793356163413855585980638942837225434777...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), Chapter 13 A Master Formula, p. 250.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi/(8*Sqrt[2]), 10, 105] // First
  • PARI
    Pi/(8*sqrt(2)) \\ G. C. Greubel, Jul 05 2017

Formula

Equals Integral_{x=0..1} (x^2*(1 + x^2))/(1 + x^4)^2 dx.
Equals beta(3/2, 1/2)/(4*sqrt(2)), where 'beta' is Euler's beta function.
Equals Sum_{k >= 0} (-1)^k * (2*k + 1)/((4*k + 1)*(4*k + 3)). - Peter Bala, Sep 21 2016
Equals Integral_{x>=0} 1/(x^2 + 2)^2 dx. - Amiram Eldar, Nov 16 2021