cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245027 Divisors of 7^12 - 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18, 19, 20, 24, 25, 26, 30, 32, 36, 38, 39, 40, 43, 45, 48, 50, 52, 57, 60, 65, 72, 75, 76, 78, 80, 86, 90, 95, 96, 100, 104, 114, 117, 120, 129, 130, 144, 150, 152, 156, 160, 171, 172, 180, 181, 190, 195, 200, 208
Offset: 1

Views

Author

Bruno Berselli, Jul 10 2014

Keywords

Comments

Number of divisors of k^12-1 for k = 2..20: 24 (2), 80 (3), 96 (4), 240 (5), 128 (6), 864 (7), 512 (8), 384 (9), 256 (10), 1920 (11), 256 (12), 960 (13), 384 (14), 448 (15), 768 (16), 1792 (17), 768 (18), 3840 (19), 384 (20).
The following triangular numbers belong to this sequence: 1, 3, 6, 10, 15, 36, 45, 78, 120, 171, 190, 300, 325, 741, 780, 2080, 2850, 4560, 8385, 14706, 16290, 5915080, 1730160900.

Examples

			13841287200 = 2^5 * 3^2 * 5^2 * 13 * 19 * 43 * 181.
		

Crossrefs

Cf. Divisors of k^12-1: A003524 (k=2); A003532 (k=4); A003543 (k=8), A027902 (k=9), A027897 (k=10), A245028 (k=11).

Programs

  • Magma
    Divisors(7^12-1);
    
  • Mathematica
    Divisors[7^12 - 1]
  • Maxima
    divisors(7^12-1);
  • PARI
    divisors(7^12-1)
    
  • Sage
    divisors(7^12-1)