cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245079 Number of bipolar Boolean functions, that is, Boolean functions that are monotone or antimonotone in each argument.

Original entry on oeis.org

2, 4, 14, 104, 2170, 230540, 499596550, 309075799150640, 14369391928071394429416818, 146629927766168786368451678290041110762316052
Offset: 0

Views

Author

Hannes Strass, Jul 11 2014

Keywords

Comments

A Boolean function is bipolar if and only if for each argument index i, the function is one of: (1) monotone in argument i, (2) antimonotone in argument i, (3) both monotone and antimonotone in argument i.
These functions are variously called "unate functions" or "locally monotone functions". - Aniruddha Biswas, May 11 2024

Examples

			There are 2 bipolar Boolean functions in 0 arguments, the constants true and false.
All 4 Boolean functions in one argument are bipolar.
For 2 arguments, only equivalence and exclusive-or are not bipolar, 16-2=14.
		

References

  • Richard Dedekind, Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Theiler, in Fest-Schrift der Herzoglichen Technischen Hochschule Carolo-Wilhelmina, pages 1-40. Vieweg+Teubner Verlag (1897).

Crossrefs

Cf. A006126.

Formula

a(n) = Sum_{i=1..n}(2^i * C(n,i) * A006126(i)) + 2.

Extensions

a(7)-a(8) corrected by and a(9) from Aniruddha Biswas, May 11 2024